Suppr超能文献

基于递归计算的用于检测阿尔茨海默病的高效 ANN SoC。

An efficient ANN SoC for detecting Alzheimer's disease based on recurrent computing.

机构信息

Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, Zhejiang, China.

Electrical and Electronic Engineering, Wenzhou University, Wenzhou, 325035, Zhejiang, China.

出版信息

Comput Biol Med. 2024 Oct;181:108993. doi: 10.1016/j.compbiomed.2024.108993. Epub 2024 Aug 21.

Abstract

Alzheimer's Disease (AD) is an irreversible, degenerative condition that, while incurable, can have its progression slowed or impeded. While there are numerous methods utilizing neural networks for AD detection, there is a scarcity of High-performance AD detection chips. Moreover, excessively complex neural networks are not conducive to on-chip implementation and clinical applications. This study addresses the challenges of high misdiagnosis rates and significant hardware costs inherent in traditional AD detection techniques. A novel and efficient AD detection framework based on a recurrent computational strategy is proposed. The framework harnesses an Artificial Neural Network (ANN) embedded within a System on Chip (SoC) to perform sophisticated Electroencephalogram (EEG) analysis. The approach began by employing a reduced IEEE754 single-precision encoding method to hardware-encode the preprocessed EEG data, thereby minimizing the memory storage area. Next, data remapping techniques were utilized to ensure the continuity of the input data read addresses and reduce the memory access pressure during neural network computations. Subsequently, hierarchical and Processing Element (PE) reuse technologies were leveraged to perform the multiply-accumulate operations of the ANN. Finally, a step function was chosen to establish binary classification circuits dedicated to AD detection. Experimental results indicate that the optimized SoC achieves a 70 % reduction in area and a 50 % reduction in power consumption compared to traditional designs. For various neural network models, the detection model proposed in this paper incurs less overhead, with a training speed 3 to 4 times faster than other traditional models, and a high accuracy rate of 98.53 %.

摘要

阿尔茨海默病(AD)是一种不可逆转的、进行性的疾病,虽然无法治愈,但可以减缓或阻止其进展。虽然有许多利用神经网络进行 AD 检测的方法,但缺乏高性能的 AD 检测芯片。此外,过于复杂的神经网络不利于在片上实现和临床应用。本研究针对传统 AD 检测技术误诊率高和硬件成本高的挑战。提出了一种基于循环计算策略的新颖有效的 AD 检测框架。该框架利用片上系统(SoC)内的人工神经网络(ANN)来执行复杂的脑电图(EEG)分析。该方法首先采用简化的 IEEE754 单精度编码方法对预处理后的 EEG 数据进行硬件编码,从而最小化存储区域。接下来,使用数据重映射技术确保输入数据读取地址的连续性,并减少神经网络计算期间的存储访问压力。随后,利用分层和处理元素(PE)重用技术执行 ANN 的乘法累加操作。最后,选择阶跃函数来建立专门用于 AD 检测的二进制分类电路。实验结果表明,与传统设计相比,优化后的 SoC 面积减少了 70%,功耗降低了 50%。对于各种神经网络模型,本文提出的检测模型开销较小,训练速度比其他传统模型快 3 到 4 倍,准确率高达 98.53%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验