Suppr超能文献

基于稳健不变特征的改进型 I-FAST 系统,用于从未经处理的脑电图诊断阿尔茨海默病。

An improved I-FAST system for the diagnosis of Alzheimer's disease from unprocessed electroencephalograms by using robust invariant features.

机构信息

Semeion Research Centre of Sciences of Communication, Via Sersale 117, Rome 00128, Italy; Department of Mathematical and Statistical Sciences, University of Colorado at Denver, P.O. Box 173364, Denver, CO, USA.

Institute of Neurology, Campus Bio-Medico University, Via Álvaro del Portillo 200, 00128 Rome, Italy.

出版信息

Artif Intell Med. 2015 May;64(1):59-74. doi: 10.1016/j.artmed.2015.03.003. Epub 2015 May 12.

Abstract

OBJECTIVE

This paper proposes a new, complex algorithm for the blind classification of the original electroencephalogram (EEG) tracing of each subject, without any preliminary pre-processing. The medical need in this field is to reach an early differential diagnosis between subjects affected by mild cognitive impairment (MCI), early Alzheimer's disease (AD) and the healthy elderly (CTR) using only the recording and the analysis of few minutes of their EEG.

METHODS AND MATERIAL

This study analyzed the EEGs of 272 subjects, recorded at Rome's Neurology Unit of the Policlinico Campus Bio-Medico. The EEG recordings were performed using 19 electrodes, in a 0.3-70Hz bandpass, positioned according to the International 10-20 System. Many powerful learning machines and algorithms have been proposed during the last 20 years to effectively resolve this complex problem, resulting in different and interesting outcomes. Among these algorithms, a new artificial adaptive system, named implicit function as squashing time (I-FAST), is able to diagnose, with high accuracy, a few minutes of the subject's EEG track; whether it manifests an AD, MCI or CTR condition. An updating of this system, carried out by adding a new algorithm, named multi scale ranked organizing maps (MS-ROM), to the I-FAST system, is presented, in order to classify with greater accuracy the unprocessed EEG's of AD, MCI and control subjects.

RESULTS

The proposed system has been measured on three independent pattern recognition tasks from unprocessed EEG tracks of a sample of AD subjects, MCI subjects and CTR: (a) AD compared with CTR; (b) AD compared with MCI; (c) CTR compared with MCI. While the values of accuracy of the previous system in distinguishing between AD and MCI were around 92%, the new proposed system reaches values between 94% and 98%. Similarly, the overall accuracy with best artificial neural networks (ANNs) is 98.25% for the distinguishing between CTR and MCI.

CONCLUSIONS

This new version of I-FAST makes different steps forward: (a) avoidance of pre-processing phase and filtering procedure of EEG data, being the algorithm able to directly process an unprocessed EEG; (b) noise elimination, through the use of a training variant with input selection and testing system, based on naïve Bayes classifier; (c) a more robust classification phase, showing the stability of results on nine well known learning machine algorithms; (d) extraction of spatial invariants of an EEG signal using, in addition to the unsupervised ANN, the principal component analysis and the multi scale entropy, together with the MS-ROM; a more accurate performance in this specific task.

摘要

目的

本文提出了一种新的复杂算法,用于对每个受试者的原始脑电图(EEG)轨迹进行盲分类,无需任何预处理。该领域的医学需求是,仅使用记录和分析受试者几分钟的 EEG,即可实现对轻度认知障碍(MCI)、早期阿尔茨海默病(AD)和健康老年人(CTR)的早期鉴别诊断。

方法与材料

本研究分析了来自罗马神经病学系的 272 名受试者的 EEG 记录。使用国际 10-20 系统定位的 19 个电极在 0.3-70Hz 带通内进行 EEG 记录。在过去的 20 年中,已经提出了许多强大的学习机器和算法来有效地解决这个复杂问题,得出了不同且有趣的结果。在这些算法中,一种新的人工自适应系统,称为隐函数挤压时间(I-FAST),能够以高精度诊断受试者 EEG 轨迹的几分钟,表现出 AD、MCI 或 CTR 状态。通过向 I-FAST 系统添加新算法——多尺度排序组织映射(MS-ROM),对该系统进行了更新,以更准确地分类未经处理的 AD、MCI 和对照受试者的 EEG。

结果

该系统已在三个独立的模式识别任务中进行了测试,这些任务涉及从 AD 受试者、MCI 受试者和 CTR 受试者的未处理 EEG 轨迹中提取的样本:(a)AD 与 CTR 相比;(b)AD 与 MCI 相比;(c)CTR 与 MCI 相比。在前一个系统区分 AD 和 MCI 的准确率约为 92%的情况下,新提出的系统达到了 94%至 98%之间的值。同样,使用最佳人工神经网络(ANNs)在区分 CTR 和 MCI 时的总体准确率为 98.25%。

结论

这个新版本的 I-FAST 向前迈出了不同的一步:(a)避免 EEG 数据的预处理阶段和滤波过程,该算法能够直接处理未经处理的 EEG;(b)通过使用基于朴素贝叶斯分类器的输入选择和测试系统的训练变体来消除噪声;(c)一个更稳健的分类阶段,展示了在九个知名学习机器算法上的结果稳定性;(d)使用主成分分析和多尺度熵以及 MS-ROM 提取 EEG 信号的空间不变量,在这个特定任务中表现出更准确的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验