Ren Bo, Xing Zipeng, Zhang Na, Cheng Tao, Liu Xinyue, Chen Weizi, Wang Zibin, Li Zhenzi, Zhou Wei
Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China.
Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China.
J Colloid Interface Sci. 2025 Jan;677(Pt B):882-895. doi: 10.1016/j.jcis.2024.08.116. Epub 2024 Aug 21.
Enhancing the velocity of the oxidation-reduction cycle is crucial for improving the catalytic efficiency of Fenton processes. Therefore, the development of an effective strategy for wastewater degradation at low temperatures is essential. In this context, we present the preparation of an NH-MIL-88B (Fe)/CuInS S-scheme heterojunction. Specifically, CuInS nanoparticles are introduced onto the Ferro-organic skeleton, resulting in the exposure of a significant number of active surface sites. Furthermore, NH-MIL-88B (Fe)/CuInS demonstrates an extended photoresponse into the long-wavelength region, which contributes to its excellent photothermal properties. Notably, the degradation rate of tetracycline in low-temperature aqueous environments reaches as high as 99.7 %, several times higher than that of the original sample. Additionally, the hydrogen production of NH-MIL-88B (Fe)/CuInS is 2.23 times that of single NH-MIL-88B (Fe) and 3.46 times that of single CuInS. Moreover, the system exhibits good HO evolution performance, forming an efficient photo-Fenton system. The charge transfer process in S-scheme heterojunction is confirmed using in-situ X-ray photoelectron spectroscopy and electron paramagnetic resonance. Both transient photoluminescence and photo electrochemical tests further validate the enhanced photoelectrochemical properties of the NH-MIL-88B (Fe)/CuInS S-scheme heterojunction. The exceptional performance of this system can be attributed to the synergistic effects of the S-scheme heterojunction and the bimetallic codoped photo-Fenton system. This research presents a novel approach for the breakdown of low-temperature wastewater using an improved photocatalytic Fenton system.
提高氧化还原循环的速度对于提高芬顿法的催化效率至关重要。因此,开发一种在低温下有效降解废水的策略至关重要。在此背景下,我们展示了NH-MIL-88B(Fe)/CuInS S型异质结的制备。具体而言,将CuInS纳米颗粒引入到铁有机骨架上,导致大量活性表面位点暴露。此外,NH-MIL-88B(Fe)/CuInS在长波长区域表现出扩展的光响应,这有助于其优异的光热性能。值得注意的是,在低温水环境中四环素的降解率高达99.7%,比原始样品高出几倍。此外,NH-MIL-88B(Fe)/CuInS的产氢量是单一NH-MIL-88B(Fe)的2.23倍,是单一CuInS的3.46倍。此外,该体系表现出良好的羟基自由基生成性能,形成了高效的光芬顿体系。利用原位X射线光电子能谱和电子顺磁共振证实了S型异质结中的电荷转移过程。瞬态光致发光和光电化学测试进一步验证了NH-MIL-88B(Fe)/CuInS S型异质结增强的光电化学性能。该体系的优异性能可归因于S型异质结和双金属共掺杂光芬顿体系的协同效应。本研究提出了一种利用改进的光催化芬顿体系分解低温废水的新方法。