Suppr超能文献

三维各向异性支架中包裹的 HEK293T 细胞在循环机械刺激下高效产生高产量的细胞外囊泡,用于有效的药物载体系统。

High-yield extracellular vesicle production from HEK293T cells encapsulated in 3D auxetic scaffolds with cyclic mechanical stimulation for effective drug carrier systems.

机构信息

Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan.

Research & Development Center for x-Dimensional Extracellular Vesicles, China Medical University Hospital, Taichung 404332, Taiwan.

出版信息

Biofabrication. 2024 Sep 2;16(4). doi: 10.1088/1758-5090/ad728b.

Abstract

Extracellular vesicles (EVs) show promise in drug loading and delivery for medical applications. However, the lack of scalable manufacturing processes hinders the generation of clinically suitable quantities, thereby impeding the translation of EV-based therapies. Current EV production relies heavily on non-physiological two-dimensional (2D) cell culture or bioreactors, requiring significant resources. Additionally, EV-derived ribonucleic acid cargo in three-dimensional (3D) and 2D culture environments remains largely unknown. In this study, we optimized the biofabrication of 3D auxetic scaffolds encapsulated with human embryonic kidney 293 T (HEK293 T) cells, focusing on enhancing the mechanical properties of the scaffolds to significantly boost EV production through tensile stimulation in bioreactors. The proposed platform increased EV yields approximately 115-fold compared to conventional 2D culture, possessing properties that inhibit tumor progression. Further mechanistic examinations revealed that this effect was mediated by the mechanosensitivity of YAP/TAZ. EVs derived from tensile-stimulated HEK293 T cells on 3D auxetic scaffolds demonstrated superior capability for loading doxorubicin compared to their 2D counterparts for cancer therapy. Our results underscore the potential of this strategy for scaling up EV production and optimizing functional performance for clinical translation.

摘要

细胞外囊泡 (EVs) 在药物负载和输送方面具有应用于医疗的潜力。然而,缺乏可扩展的制造工艺阻碍了临床适用数量的产生,从而阻碍了基于 EV 的治疗方法的转化。目前的 EV 生产严重依赖于非生理二维 (2D) 细胞培养或生物反应器,需要大量资源。此外,三维 (3D) 和 2D 培养环境中 EV 衍生的核糖核酸货物在很大程度上仍不清楚。在这项研究中,我们优化了包裹人胚肾 293T(HEK293T)细胞的 3D 各向异性支架的生物制造,重点是通过生物反应器中的拉伸刺激来增强支架的机械性能,从而显著提高 EV 的产量。与传统的 2D 培养相比,所提出的平台使 EV 的产量增加了约 115 倍,同时具有抑制肿瘤进展的特性。进一步的机制研究表明,这种效应是由 YAP/TAZ 的机械敏感性介导的。与 2D 对应物相比,从拉伸刺激的 3D 各向异性支架上的 HEK293T 细胞衍生的 EV 显示出更好的载药能力,可用于癌症治疗。我们的研究结果强调了这种策略在扩大 EV 产量和优化临床转化的功能性能方面的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验