Suppr超能文献

Renal reduced nicotinamide adenine dinucleotide phosphate:cytochrome c reductase-mediated metabolism of the carcinogen N-[4-(5-nitro-2-furyl)-2-thiazolyl]acetamide.

作者信息

Mattammal M B, Zenser T V, Palmier M O, Davis B B

出版信息

Cancer Res. 1985 Jan;45(1):149-56.

PMID:3917370
Abstract

N-[4-(5-Nitro-2-furyl)-2-thiazolyl]acetamide (NFTA) metabolism was examined in vitro using microsomes prepared from rat liver and renal cortex and from rabbit liver and renal cortex and outer and inner medulla. NFTA nitroreduction was observed with each tissue. Three mol of NADPH were used per mol of NFTA reduced. Substrate and inhibitor specificity suggested that the microsomal nitroreduction was due to NADPH:cytochrome c reductase. Metabolite(s) formed bound to protein, RNA, DNA, and synthetic polyribonucleotides. Maximum covalent binding was seen with polyguanylic acid. A guanosine-NFTA adduct was isolated. Binding was inhibited by sulfhydryl compounds and vitamin E. The [14C]NFTA:glutathione or [3H]glutathione:NFTA conjugates obtained from microsomal incubations showed identical chromatographic properties as the product obtained by the reaction of synthetic N-hydroxy-NFTA with [3H]glutathione. Structures of synthetic N-hydroxy-NFTA and the microsomal reduction product 1-[4-(2-acetylaminothiazolyl)]-3-cyano-1-propanone were established by mass spectrometry. The latter reduction product did not bind macromolecules. These results suggest that renal NADPH:cytochrome c reductase reduces NFTA to an N-hydroxy-NFTA intermediate that binds nucleophilic sites on macromolecules.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验