ATACAMA-OMICS, Faculty of Medicine, University of Atacama, Los Carreras 1579, 1532502 Copiapo, Chile; Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India.
Chennai Institute of Technology (CIT), Chennai 600069, Tamil Nadu, India.
Int J Biol Macromol. 2024 Oct;278(Pt 3):134870. doi: 10.1016/j.ijbiomac.2024.134870. Epub 2024 Aug 22.
This study reports the synthesis and analysis of biologically active acylthiourea compounds (1 and 2) with a cyclohexyl moiety. The compounds were characterized using UV-Visible, FT-IR, H/C NMR, and elemental analysis. The crystal structure of 2 was solved, revealing intra- and inter-molecular hydrogen bonds. Density functional theory (DFT) calculations provided insights into chemical reactivity and non-covalent interactions. Cytotoxicity assays showed the cyclohexyl group enhanced the activity of compound 2 compared to compound 1. Epoxide hydrolase 1 was predicted as the enzyme target for both compounds. We modeled the structure of epoxide hydrolase 1 and performed molecular dynamics simulation and docking studies. Additionally, in silico docking with SARS-CoV-2 main protease, human ACE2, and avian influenza H5N1 hemagglutinin indicated strong binding potential of the compounds. This integrated approach improves our understanding of the biological potential of acylthiourea derivatives.
本研究报告了具有环己基部分的生物活性酰基硫脲化合物(1 和 2)的合成与分析。使用 UV-可见光谱、FT-IR、H/C NMR 和元素分析对化合物进行了表征。解析了 2 的晶体结构,揭示了分子内和分子间氢键。密度泛函理论(DFT)计算提供了对化学反应性和非共价相互作用的深入了解。细胞毒性测定表明,与化合物 1 相比,环己基增强了化合物 2 的活性。预测环氧水解酶 1 是这两种化合物的酶靶标。我们对环氧水解酶 1 的结构进行建模,并进行了分子动力学模拟和对接研究。此外,与 SARS-CoV-2 主要蛋白酶、人 ACE2 和禽流感 H5N1 血凝素的计算机对接表明,化合物具有很强的结合潜力。这种综合方法提高了我们对酰基硫脲衍生物的生物学潜力的理解。