Department of Chemical Sciences and Task Force for Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.
University of Cologne Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, D-50674 Cologne, Germany.
Carbohydr Polym. 2024 Nov 1;343:122433. doi: 10.1016/j.carbpol.2024.122433. Epub 2024 Jun 26.
Flavobacterium strains exert a substantial influence on roots and leaves of plants. However, there is still limited understanding of how the specific interactions between Flavobacterium and their plant hosts are and how these bacteria thrive in this competitive environment. A crucial step in understanding Flavobacterium - plant interactions is to unravel the structure of bacterial envelope components and the molecular features that facilitate initial contact with the host environment. Here, we have revealed structure and properties of the exopolysaccharides (EPS) produced by Flavobacterium sp. Root935. Chemical analyses revealed a complex and interesting branched heptasaccharidic repeating unit, containing a variety of sugar moieties, including Rha, Fuc, GlcN, Fuc4N, Gal, Man and QuiN and an important and extended substitution pattern, including acetyl and lactyl groups. Additionally, conformational analysis using molecular dynamics simulation showed an extended hydrophobic interface and a distinctly elongated, left-handed helicoidal arrangement. Furthermore, properties of the saccharide chain, and likely the huge substitution pattern prevented interaction and recognition by host lectins and possessed a low immunogenic potential, highlighting a potential role of Flavobacterium sp. Root935 in plant-microbial crosstalk.
黄杆菌属菌株对植物的根和叶有很大的影响。然而,我们对于黄杆菌属与它们的植物宿主之间的具体相互作用以及这些细菌如何在这种竞争环境中茁壮成长的了解仍然有限。理解黄杆菌属-植物相互作用的关键步骤是揭示细菌包膜成分的结构和促进与宿主环境初始接触的分子特征。在这里,我们揭示了 Flavobacterium sp. Root935 产生的胞外多糖 (EPS) 的结构和性质。化学分析揭示了一个复杂而有趣的支化七糖重复单元,包含各种糖部分,包括 Rha、Fuc、GlcN、Fuc4N、Gal、Man 和 QuiN,以及一个重要而广泛的取代模式,包括乙酰基和乳酰基。此外,使用分子动力学模拟进行的构象分析显示出一个扩展的疏水性界面和一个明显拉长的、左手螺旋排列。此外,糖链的性质,以及可能的巨大取代模式,阻止了宿主凝集素的相互作用和识别,并且具有低免疫原性潜力,这突出了 Flavobacterium sp. Root935 在植物-微生物串扰中的潜在作用。