Suppr超能文献

一种使用眼动追踪机器学习和虚拟现实技术的便携式高效痴呆筛查工具。

A portable and efficient dementia screening tool using eye tracking machine learning and virtual reality.

作者信息

Xu Ying, Zhang Chi, Pan Baobao, Yuan Qing, Zhang Xu

机构信息

Shenzhen Bao'an Centre for Chronic Disease Control, Shenzhen, PR China.

Shenzhen Yiwei Technology, Shenzhen, PR China.

出版信息

NPJ Digit Med. 2024 Aug 22;7(1):219. doi: 10.1038/s41746-024-01206-5.

Abstract

Dementia represents a significant global health challenge, with early screening during the preclinical stage being crucial for effective management. Traditional diagnostic biomarkers for Alzheimer's Disease, the most common form of dementia, are limited by cost and invasiveness. Mild cognitive impairment (MCI), a precursor to dementia, is currently identified through neuropsychological tests like the Montreal Cognitive Assessment (MoCA), which are not suitable for large-scale screening. Eye-tracking technology, capturing and quantifying eye movements related to cognitive behavior, has emerged as a promising tool for cognitive assessment. Subtle changes in eye movements could serve as early indicators of MCI. However, the interpretation of eye-tracking data is challenging. This study introduced a dementia screening tool, VR Eye-tracking Cognitive Assessment (VECA), using eye-tracking technology, machine learning, and virtual reality (VR) to offer a non-invasive, efficient alternative capable of large-scale deployment. VECA was conducted with 201 participants from Shenzhen Baoan Chronic Hospital, utilizing eye-tracking data captured via VR headsets to predict MoCA scores and classify cognitive impairment across different educational backgrounds. The support vector regression model employed demonstrated a high correlation (0.9) with MoCA scores, significantly outperforming baseline models. Furthermore, it established optimal cut-off scores for identifying cognitive impairment with notable sensitivity (88.5%) and specificity (83%). This study underscores VECA's potential as a portable, efficient tool for early dementia screening, highlighting the benefits of integrating eye-tracking technology, machine learning, and VR in cognitive health assessments.

摘要

痴呆症是一项重大的全球健康挑战,临床前阶段的早期筛查对于有效管理至关重要。阿尔茨海默病是最常见的痴呆症形式,其传统诊断生物标志物受到成本和侵入性的限制。轻度认知障碍(MCI)是痴呆症的前驱症状,目前通过蒙特利尔认知评估量表(MoCA)等神经心理学测试来识别,但这些测试不适用于大规模筛查。眼动追踪技术能够捕捉和量化与认知行为相关的眼动,已成为一种很有前景的认知评估工具。眼动的细微变化可能作为MCI的早期指标。然而,眼动追踪数据的解读具有挑战性。本研究引入了一种痴呆症筛查工具——虚拟现实眼动追踪认知评估(VECA),利用眼动追踪技术、机器学习和虚拟现实(VR),提供一种能够大规模部署的非侵入性、高效替代方法。对来自深圳宝安慢性病医院的201名参与者进行了VECA测试,利用通过VR头显捕捉的眼动数据来预测MoCA分数,并对不同教育背景下的认知障碍进行分类。所采用的支持向量回归模型与MoCA分数具有高度相关性(0.9),显著优于基线模型。此外,它还确定了用于识别认知障碍的最佳截断分数,具有显著的敏感性(88.5%)和特异性(83%)。本研究强调了VECA作为一种便携式、高效的早期痴呆症筛查工具的潜力,突出了将眼动追踪技术、机器学习和VR整合到认知健康评估中的益处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/007b/11341897/456c10b70c42/41746_2024_1206_Fig3_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验