Department of General Practice, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
Amsterdam Public Health Research Institute, Amsterdam, The Netherlands.
Qual Life Res. 2024 Nov;33(11):2963-2973. doi: 10.1007/s11136-024-03763-4. Epub 2024 Aug 22.
The minimal important change (MIC) in a patient-reported outcome measure is often estimated using patient-reported transition ratings as anchor. However, transition ratings are often more heavily weighted by the follow-up state than by the baseline state, a phenomenon known as "present state bias" (PSB). It is unknown if and how PSB affects the estimation of MICs using various methods.
We simulated 3240 samples in which the true MIC was simulated as the mean of individual MICs, and PSB was created by basing transition ratings on a "weighted change", differentially weighting baseline and follow-up states. In each sample we estimated MICs based on the following methods: mean change (MC), receiver operating characteristic (ROC) analysis, predictive modeling (PM), adjusted predictive modeling (APM), longitudinal item response theory (LIRT), and longitudinal confirmatory factor analysis (LCFA). The latter two MICs were estimated with and without constraints on the transition item slope parameters (LIRT) or factor loadings (LCFA).
PSB did not affect MIC estimates based on MC, ROC, and PM but these methods were biased by other factors. PSB caused imprecision in the MIC estimates based on APM, LIRT and LCFA with constraints, if the degree of PSB was substantial. However, the unconstrained LIRT- and LCFA-based MICs recovered the true MIC without bias and with high precision, independent of the degree of PSB.
We recommend the unconstrained LIRT- and LCFA-based MIC methods to estimate anchor-based MICs, irrespective of the degree of PSB. The APM-method is a feasible alternative if PSB is limited.
患者报告结局测量的最小重要变化(MIC)通常使用患者报告的过渡评分作为锚点进行估计。然而,过渡评分往往比基线状态更受随访状态的影响,这种现象被称为“当前状态偏差”(PSB)。目前尚不清楚 PSB 是否以及如何影响使用各种方法估计 MIC。
我们模拟了 3240 个样本,其中真实的 MIC 被模拟为个体 MIC 的平均值,并且通过基于“加权变化”来创建过渡评分来产生 PSB,对基线和随访状态进行不同的加权。在每个样本中,我们根据以下方法估计 MIC:均值变化(MC)、接收者操作特征(ROC)分析、预测建模(PM)、调整后的预测建模(APM)、纵向项目反应理论(LIRT)和纵向验证性因素分析(LCFA)。后两个 MIC 是在对过渡项目斜率参数(LIRT)或因子载荷(LCFA)进行约束和不进行约束的情况下进行估计的。
PSB 不会影响基于 MC、ROC 和 PM 的 MIC 估计,但这些方法受到其他因素的影响。如果 PSB 的程度很大,则 PSB 会导致基于 APM、LIRT 和 LCFA(带约束)的 MIC 估计不准确。然而,不受约束的基于 LIRT 和 LCFA 的 MIC 能够准确且精确地恢复真实的 MIC,而不受 PSB 程度的影响。
我们建议使用不受约束的基于 LIRT 和 LCFA 的 MIC 方法来估计基于锚点的 MIC,无论 PSB 的程度如何。如果 PSB 有限,则 APM 方法是一种可行的替代方法。