Suppr超能文献

原发性干燥综合征患者肾小管酸中毒的风险因素分析及列线图预测模型的建立。

Analysis of risk factors and development of a nomogram prediction model for renal tubular acidosis in primary Sjogren syndrome patients.

机构信息

The First Clinical College, Xuzhou Medical University, Jiangsu Province, China.

Rheumatology And Immunology Department, The Affiliated Hospital Of Xuzhou Medical University, Jiangsu Province, China.

出版信息

Arthritis Res Ther. 2024 Aug 22;26(1):151. doi: 10.1186/s13075-024-03383-w.

Abstract

OBJECTIVE

To investigate the risk factors of renal tubular acidosis (RTA) in patients with primary Sjögren's syndrome (pSS) and create a personalized nomogram for predicting pSS-RTA patients.

METHOD

Data from 99 pSS patients who underwent inpatient treatment at our hospital from January 2012 to January 2024 were retrospectively collected and analyzed. Bootstrap resampling technique, single-factor, and multi-factor logistic regression analyses were used to explore the risk factors for pSS-RTA. A nomogram was developed based on the results of the multivariate logistic model. The model was evaluated through receiver operating characteristic curve, C-index, calibration curve, and decision curve analysis. In addition, we graded the severity of pSS-RTA patients and used univariate analysis to assess the relationship between pSS-RTA severity and risk factors.

RESULTS

A multivariate logistic regression analysis revealed that concurrent thyroid disease, long symptom duration, subjective dry mouth, and positive RF were independent risk factors for pSS-RTA patients. Based on them, a personalized nomogram predictive model was established. With a p-value of 0.657 from the Hosmer-Lemeshow test, the model demonstrated a good fit. The AUC values in the training and validation groups were 0.912 and 0.896, indicating a strong discriminative power of the nomogram. The calibration curves for the training and validation groups closely followed the diagonal line with a slope of 1, confirming the model's reliable predictive ability. Furthermore, the decision curve analysis showed that the nomogram model had a net benefit in predicting pSS-RTA, emphasizing its clinical value.This study did not find an association between the severity of pSS-RTA and risk factors.

DISCUSSION

We developed a nomogram to predict RTA occurrence in pSS patients, and it is believed to provide a foundation for early identification and intervention for high-risk pSS patients.

摘要

目的

探讨原发性干燥综合征(pSS)患者发生肾小管酸中毒(RTA)的危险因素,并建立预测 pSS-RTA 患者的个体化列线图。

方法

回顾性分析 2012 年 1 月至 2024 年 1 月在我院住院治疗的 99 例 pSS 患者的临床资料。采用 Bootstrap 重采样技术、单因素和多因素逻辑回归分析探讨 pSS-RTA 的危险因素。根据多因素逻辑回归模型的结果,建立列线图。通过受试者工作特征曲线、C 指数、校准曲线和决策曲线分析对模型进行评估。此外,我们对 pSS-RTA 患者的严重程度进行分级,并采用单因素分析评估 pSS-RTA 严重程度与危险因素的关系。

结果

多因素逻辑回归分析显示,合并甲状腺疾病、症状持续时间长、主观口干和 RF 阳性是 pSS-RTA 患者的独立危险因素。在此基础上建立了个体化列线图预测模型。Hosmer-Lemeshow 检验 p 值为 0.657,表明模型拟合良好。训练集和验证集的 AUC 值分别为 0.912 和 0.896,表明列线图具有较强的判别能力。训练集和验证集的校准曲线均接近斜率为 1 的对角线,表明模型具有可靠的预测能力。此外,决策曲线分析表明,列线图模型在预测 pSS-RTA 方面具有净获益,强调了其临床价值。本研究未发现 pSS-RTA 严重程度与危险因素之间的相关性。

讨论

我们建立了预测 pSS 患者发生 RTA 的列线图,有望为高危 pSS 患者的早期识别和干预提供依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/187e/11340110/0f1c69e240ee/13075_2024_3383_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验