Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, School of Medicine, Shanghai Jiao Tong University, 200025, Shanghai, China.
School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 310024, Hangzhou, China.
Angew Chem Int Ed Engl. 2024 Nov 18;63(47):e202407921. doi: 10.1002/anie.202407921. Epub 2024 Oct 17.
Fatty acids produced by the type-II fatty acid biosynthetic pathway (FAS-II) are essential biomaterials for bacterial membrane construction and numerous metabolic routes. The β-ketoacyl-ACP synthase FabF catalyzes the key C-C bond formation step for fatty acid elongation in FAS-II. Here, we revealed the substrate recognition and catalytic mechanisms of FabF by determining FabF-ACP complexes. FabF displays a distinctive bimodal catalytic pattern specifically on C6 and C10 acyl-ACP substrates. It utilizes positively charged residues located on the η3-helix and loop1 regions near the catalytic tunnel entrance to bind ACP, and two hydrophobic cavities as well as "front", "middle", and "back" door residues to specifically stabilize C6 and C10 acyl substrates for preferential catalysis. Further quantum chemistry calculations suggest that the FabF catalytic residues Lys336 and His304 facilitate proton transfer during condensation catalysis and C-C bond formation. Our results provide key mechanistic insights into the biosynthesis of molecular carbon skeletons based on ketosynthases that are highly conserved through the FAS and polyketide synthase (PKS) analogous biosynthetic routes, broaden the understanding of the tricarboxylic acid cycle that utilizes lipoic acid derived from C8-ACP accumulated due to the FabF distinctive catalytic pattern for oxidative decarboxylations, and may facilitate the development of narrow-spectrum antibacterial drugs.
脂肪酸合成酶 II(FAS-II)途径产生的脂肪酸是细菌膜构建和多种代谢途径所必需的生物材料。β-酮酰基-ACP 合酶 FabF 催化 FAS-II 中脂肪酸延伸的关键 C-C 键形成步骤。在这里,我们通过确定 FabF-ACP 复合物揭示了 FabF 的底物识别和催化机制。FabF 对 C6 和 C10 酰基-ACP 底物表现出独特的双峰催化模式。它利用位于催化隧道入口附近的 η3-螺旋和环 1 区域的正电荷残基结合 ACP,并用两个疏水性腔以及“前”、“中”和“后”门残基来特异性稳定 C6 和 C10 酰基底物以进行优先催化。进一步的量子化学计算表明,FabF 的催化残基 Lys336 和 His304 在缩合催化和 C-C 键形成过程中促进质子转移。我们的研究结果为基于高度保守的酮合酶的分子碳骨架生物合成提供了关键的机制见解,这些酮合酶通过 FAS 和聚酮合酶(PKS)类似的生物合成途径,拓宽了对利用由于 FabF 独特的氧化脱羧催化模式而积累的来自 C8-ACP 的硫辛酸的三羧酸循环的理解,并可能有助于开发窄谱抗菌药物。