Suppr超能文献

基于机制的交联探针捕获了具有不同构象的大肠杆菌酮合酶 FabB。

Mechanism-based cross-linking probes capture the Escherichia coli ketosynthase FabB in conformationally distinct catalytic states.

机构信息

Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.

Department of Biotechnology, The Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.

出版信息

Acta Crystallogr D Struct Biol. 2022 Sep 1;78(Pt 9):1171-1179. doi: 10.1107/S2059798322007434. Epub 2022 Aug 30.

Abstract

Ketosynthases (KSs) catalyse essential carbon-carbon bond-forming reactions in fatty-acid biosynthesis using a two-step, ping-pong reaction mechanism. In Escherichia coli, there are two homodimeric elongating KSs, FabB and FabF, which possess overlapping substrate selectivity. However, FabB is essential for the biosynthesis of the unsaturated fatty acids (UFAs) required for cell survival in the absence of exogenous UFAs. Additionally, FabB has reduced activity towards substrates longer than 12 C atoms, whereas FabF efficiently catalyses the elongation of saturated C14 and unsaturated C16:1 acyl-acyl carrier protein (ACP) complexes. In this study, two cross-linked crystal structures of FabB in complex with ACPs functionalized with long-chain fatty-acid cross-linking probes that approximate catalytic steps were solved. Both homodimeric structures possess asymmetric substrate-binding pockets suggestive of cooperative relationships between the two FabB monomers when engaged with C14 and C16 acyl chains. In addition, these structures capture an unusual rotamer of the active-site gating residue, Phe392, which is potentially representative of the catalytic state prior to substrate release. These structures demonstrate the utility of mechanism-based cross-linking methods to capture and elucidate conformational transitions accompanying KS-mediated catalysis at near-atomic resolution.

摘要

酮基合酶(KSs)在脂肪酸生物合成中使用两步乒乓反应机制催化重要的碳-碳键形成反应。在大肠杆菌中,有两种同源二聚体延伸 KSs,FabB 和 FabF,它们具有重叠的底物选择性。然而,FabB 对于不饱和脂肪酸(UFAs)的生物合成是必需的,这些不饱和脂肪酸是细胞在没有外源 UFAs 的情况下生存所必需的。此外,FabB 对长于 12 个碳原子的底物的活性降低,而 FabF 则有效地催化饱和 C14 和不饱和 C16:1 酰基-酰基载体蛋白(ACP)复合物的延伸。在这项研究中,解决了两个与 ACP 复合的 FabB 的交联晶体结构,该 ACP 用近似催化步骤的长链脂肪酸交联探针进行了功能化。这两种同源二聚体结构都具有不对称的底物结合口袋,表明当与 C14 和 C16 酰基链结合时,两个 FabB 单体之间存在协同关系。此外,这些结构捕获了活性位点门控残基 Phe392 的一种异常旋转体,这可能代表了在底物释放之前的催化状态。这些结构证明了基于机制的交联方法在近原子分辨率下捕捉和阐明伴随 KS 介导的催化的构象转变的实用性。

相似文献

1
Mechanism-based cross-linking probes capture the Escherichia coli ketosynthase FabB in conformationally distinct catalytic states.
Acta Crystallogr D Struct Biol. 2022 Sep 1;78(Pt 9):1171-1179. doi: 10.1107/S2059798322007434. Epub 2022 Aug 30.
2
Gating mechanism of elongating β-ketoacyl-ACP synthases.
Nat Commun. 2020 Apr 7;11(1):1727. doi: 10.1038/s41467-020-15455-x.
3
Structure and mechanistic analyses of the gating mechanism of elongating ketosynthases.
ACS Catal. 2021 Jun 18;11(12):6787-6799. doi: 10.1021/acscatal.1c00745. Epub 2021 May 26.
5
Ketosynthase mutants enable short-chain fatty acid biosynthesis in E. coli.
Metab Eng. 2023 May;77:118-127. doi: 10.1016/j.ymben.2023.03.008. Epub 2023 Mar 22.
6
A cryptic long-chain 3-ketoacyl-ACP synthase in the Pseudomonas putida F1 unsaturated fatty acid synthesis pathway.
J Biol Chem. 2021 Aug;297(2):100920. doi: 10.1016/j.jbc.2021.100920. Epub 2021 Jun 25.
7
Complex binding of the FabR repressor of bacterial unsaturated fatty acid biosynthesis to its cognate promoters.
Mol Microbiol. 2011 Apr;80(1):195-218. doi: 10.1111/j.1365-2958.2011.07564.x. Epub 2011 Feb 21.
8
Activity Mapping the Acyl Carrier Protein: Elongating Ketosynthase Interaction in Fatty Acid Biosynthesis.
Biochemistry. 2020 Sep 29;59(38):3626-3638. doi: 10.1021/acs.biochem.0c00605. Epub 2020 Sep 11.
9
Suppression of fabB Mutation by fabF1 Is Mediated by Transcription Read-through in Shewanella oneidensis.
J Bacteriol. 2016 Oct 21;198(22):3060-3069. doi: 10.1128/JB.00463-16. Print 2016 Nov 15.

引用本文的文献

1
Visualizing acyl carrier protein interactions within a crosslinked type I polyketide synthase.
Nat Commun. 2025 Aug 21;16(1):7798. doi: 10.1038/s41467-025-63024-x.
2
Stable H-bond networks are crucial for selective CLK1 inhibition: a computational perspective.
Front Chem. 2025 Jun 17;13:1582515. doi: 10.3389/fchem.2025.1582515. eCollection 2025.
3
The Kinetics of Carbon-Carbon Bond Formation in Metazoan Fatty Acid Synthase and Its Impact on Product Fidelity.
Angew Chem Int Ed Engl. 2025 Jan 10;64(2):e202412195. doi: 10.1002/anie.202412195. Epub 2024 Dec 4.
5
Masked cerulenin enables a dual-site selective protein crosslink.
Chem Sci. 2023 Sep 8;14(39):10925-10933. doi: 10.1039/d3sc02864j. eCollection 2023 Oct 11.

本文引用的文献

1
Structure and mechanistic analyses of the gating mechanism of elongating ketosynthases.
ACS Catal. 2021 Jun 18;11(12):6787-6799. doi: 10.1021/acscatal.1c00745. Epub 2021 May 26.
2
Enzymology of standalone elongating ketosynthases.
Chem Sci. 2022 Mar 9;13(15):4225-4238. doi: 10.1039/d1sc07256k. eCollection 2022 Apr 13.
3
Structural Insight into the Reaction Mechanism of Ketosynthase-Like Decarboxylase in a Loading Module of Modular Polyketide Synthases.
ACS Chem Biol. 2022 Jan 21;17(1):198-206. doi: 10.1021/acschembio.1c00856. Epub 2022 Jan 5.
4
A cryptic long-chain 3-ketoacyl-ACP synthase in the Pseudomonas putida F1 unsaturated fatty acid synthesis pathway.
J Biol Chem. 2021 Aug;297(2):100920. doi: 10.1016/j.jbc.2021.100920. Epub 2021 Jun 25.
5
A kinetic rationale for functional redundancy in fatty acid biosynthesis.
Proc Natl Acad Sci U S A. 2020 Sep 22;117(38):23557-23564. doi: 10.1073/pnas.2013924117. Epub 2020 Sep 3.
6
Activity Mapping the Acyl Carrier Protein: Elongating Ketosynthase Interaction in Fatty Acid Biosynthesis.
Biochemistry. 2020 Sep 29;59(38):3626-3638. doi: 10.1021/acs.biochem.0c00605. Epub 2020 Sep 11.
7
Structural basis for selectivity in a highly reducing type II polyketide synthase.
Nat Chem Biol. 2020 Jul;16(7):776-782. doi: 10.1038/s41589-020-0530-0. Epub 2020 May 4.
8
Gating mechanism of elongating β-ketoacyl-ACP synthases.
Nat Commun. 2020 Apr 7;11(1):1727. doi: 10.1038/s41467-020-15455-x.
9
Type I fatty acid synthase trapped in the octanoyl-bound state.
Protein Sci. 2020 Feb;29(2):589-605. doi: 10.1002/pro.3797.
10
Molecular basis for interactions between an acyl carrier protein and a ketosynthase.
Nat Chem Biol. 2019 Jul;15(7):669-671. doi: 10.1038/s41589-019-0301-y. Epub 2019 Jun 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验