Suppr超能文献

基于界面自组装碳纳米管薄膜的超疏水可拉伸传感器用于自传感减阻航运。

Superhydrophobic stretchable sensors based on interfacially self-assembled carbon nanotube film for self-sensing drag-reduction shipping.

作者信息

Wang Shuai, Deng Weili, Yang Weiqing

机构信息

Research Institute of Frontier Science, Southwest Jiaotong University Chengdu 610031 PR China

Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering Ningbo 315201 PR China.

出版信息

RSC Adv. 2024 Aug 22;14(36):26505-26515. doi: 10.1039/d4ra04793a. eCollection 2024 Aug 16.

Abstract

Multifunctional flexible electronics integrated with superhydrophobicity and flexible sensing can greatly promote broader applications. However, the hierarchical roughness morphology of superhydrophobic surfaces is vulnerable to complex mechanical deformations of stretchable sensors leading to degradation of hydrophobic properties, so constructing robust superhydrophobic stretchable sensors remains challenging. Herein, we propose a facile strategy to fabricate superhydrophobic stretchable sensors based on self-assembled carbon nanotube (CNT) films at the air-water interface. The customizable functions of superhydrophobic stretchable sensors can be achieved by controlling the combination of the CNT film and polydimethylsiloxane (PDMS) through a simple and efficient interfacial transferring strategy. Even under large mechanical deformations, the developed sensors can present excellent robustness and superhydrophobicity with a water contact angle of 150.9° at 80% strain. As a proof-of-concept, this work demonstrates their potential application in self-sensing drag-reduction shipping, which is expected to realize greener, more sustainable and safer aquatic transportation.

摘要

集成超疏水性和柔性传感功能的多功能柔性电子器件能够极大地推动更广泛的应用。然而,超疏水表面的分级粗糙度形态易受可拉伸传感器复杂机械变形的影响,导致疏水性能下降,因此构建坚固的超疏水可拉伸传感器仍然具有挑战性。在此,我们提出一种简便的策略,基于在气-水界面自组装的碳纳米管(CNT)薄膜来制造超疏水可拉伸传感器。通过一种简单高效的界面转移策略控制CNT薄膜与聚二甲基硅氧烷(PDMS)的组合,可实现超疏水可拉伸传感器的定制功能。即使在大的机械变形下,所开发的传感器仍能表现出优异的坚固性和超疏水性,在80%应变下的水接触角为150.9°。作为概念验证,这项工作展示了它们在自传感减阻航运中的潜在应用,有望实现更绿色、更可持续和更安全的水上运输。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f9a/11339797/92cd72e1294c/d4ra04793a-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验