Suppr超能文献

含 AmNA 的 Gapmer 反义寡核苷酸的 - 值预测模型构建及分子动力学研究 。 需注意,原文中“Construction of a -value prediction model”这里的“ - ”表述不太明确,可能是有具体数值未完整呈现,但按照翻译要求是逐字翻译。

Construction of a -value prediction model and molecular dynamics study of AmNA-containing gapmer antisense oligonucleotide.

作者信息

Kuroda Masataka, Kasahara Yuuya, Hirose Masako, Yamaguma Harumi, Oda Masayuki, Nagao Chioko, Mizuguchi Kenji

机构信息

National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 566-0002, Japan.

Mitsubishi Tanabe Pharma Corporation, Yokohama 227-0033, Japan.

出版信息

Mol Ther Nucleic Acids. 2024 Jul 16;35(3):102272. doi: 10.1016/j.omtn.2024.102272. eCollection 2024 Sep 10.

Abstract

RNase H-dependent antisense oligonucleotides (gapmer ASOs) represent a class of nucleic acid therapeutics that bind to target RNA to facilitate RNase H-mediated RNA cleavage, thereby regulating the expression of disease-associated proteins. Integrating artificial nucleic acids into gapmer ASOs enhances their therapeutic efficacy. Among these, amido-bridged nucleic acid (AmNA) stands out for its potential to confer high affinity and stability to ASOs. However, a significant challenge in the design of gapmer ASOs incorporating artificial nucleic acids, such as AmNA, is the accurate prediction of their melting temperature ( ) values. The is a critical parameter for designing effective gapmer ASOs to ensure proper functioning. However, predicting accurate values for oligonucleotides containing artificial nucleic acids remains problematic. We developed a prediction model using a library of AmNA-containing ASOs to address this issue. We measured the values of 157 oligonucleotides through differential scanning calorimetry, enabling the construction of an accurate prediction model. Additionally, molecular dynamics simulations were used to elucidate the molecular mechanisms by which AmNA modifications elevate , thereby informing the design strategies of gapmer ASOs.

摘要

核糖核酸酶H依赖性反义寡核苷酸(间隙mer反义寡核苷酸)代表一类核酸疗法,其与靶RNA结合以促进核糖核酸酶H介导的RNA切割,从而调节疾病相关蛋白的表达。将人工核酸整合到间隙mer反义寡核苷酸中可增强其治疗效果。其中,酰胺桥连核酸(AmNA)因其赋予反义寡核苷酸高亲和力和稳定性的潜力而脱颖而出。然而,在设计包含人工核酸(如AmNA)的间隙mer反义寡核苷酸时,一个重大挑战是准确预测其解链温度(Tm)值。Tm是设计有效的间隙mer反义寡核苷酸以确保其正常功能的关键参数。然而,预测含人工核酸的寡核苷酸的准确Tm值仍然存在问题。我们开发了一种使用含AmNA的反义寡核苷酸文库的Tm预测模型来解决这个问题。我们通过差示扫描量热法测量了157种寡核苷酸的Tm值,从而构建了一个准确的预测模型。此外,分子动力学模拟被用于阐明AmNA修饰提高Tm的分子机制,从而为间隙mer反义寡核苷酸的设计策略提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68ca/11339022/8b970ef37396/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验