Suppr超能文献

基于深度学习模型的情感检测与分类优化器。

Improved optimizer with deep learning model for emotion detection and classification.

机构信息

Department of Computer Science and Engineering, Karunya Institute of Technology and Sciences, Coimbatore, India.

Department of Computer Science and Engineering, Adi Shankara Institute of Engineering and Technology, Kerala, India.

出版信息

Math Biosci Eng. 2024 Jul 17;21(7):6631-6657. doi: 10.3934/mbe.2024290.

Abstract

Facial emotion recognition (FER) is largely utilized to analyze human emotion in order to address the needs of many real-time applications such as computer-human interfaces, emotion detection, forensics, biometrics, and human-robot collaboration. Nonetheless, existing methods are mostly unable to offer correct predictions with a minimum error rate. In this paper, an innovative facial emotion recognition framework, termed extended walrus-based deep learning with Botox feature selection network (EWDL-BFSN), was designed to accurately detect facial emotions. The main goals of the EWDL-BFSN are to identify facial emotions automatically and effectively by choosing the optimal features and adjusting the hyperparameters of the classifier. The gradient wavelet anisotropic filter (GWAF) can be used for image pre-processing in the EWDL-BFSN model. Additionally, SqueezeNet is used to extract significant features. The improved Botox optimization algorithm (IBoA) is then used to choose the best features. Lastly, FER and classification are accomplished through the use of an enhanced optimization-based kernel residual 50 (EK-ResNet50) network. Meanwhile, a nature-inspired metaheuristic, walrus optimization algorithm (WOA) is utilized to pick the hyperparameters of EK-ResNet50 network model. The EWDL-BFSN model was trained and tested with publicly available CK+ and FER-2013 datasets. The Python platform was applied for implementation, and various performance metrics such as accuracy, sensitivity, specificity, and F1-score were analyzed with state-of-the-art methods. The proposed EWDL-BFSN model acquired an overall accuracy of 99.37 and 99.25% for both CK+ and FER-2013 datasets and proved its superiority in predicting facial emotions over state-of-the-art methods.

摘要

面部情绪识别(FER)主要用于分析人类情绪,以满足许多实时应用的需求,如人机界面、情绪检测、取证、生物识别和人机协作。然而,现有的方法大多无法以最小的错误率提供正确的预测。在本文中,设计了一种创新的面部情绪识别框架,称为基于扩展海象的深度学习与肉毒杆菌特征选择网络(EWDL-BFSN),以准确地检测面部情绪。EWDL-BFSN 的主要目标是通过选择最佳特征和调整分类器的超参数,自动有效地识别面部情绪。梯度波分析各向异性滤波器(GWAF)可用于 EWDL-BFSN 模型的图像预处理。此外,还使用 SqueezeNet 提取显著特征。然后使用改进的肉毒杆菌优化算法(IBoA)选择最佳特征。最后,通过使用增强优化核残差 50(EK-ResNet50)网络来完成 FER 和分类。同时,利用一种受自然启发的元启发式算法,海象优化算法(WOA)来选择 EK-ResNet50 网络模型的超参数。EWDL-BFSN 模型使用公开可用的 CK+和 FER-2013 数据集进行训练和测试。应用 Python 平台进行实现,并与最先进的方法进行了准确性、敏感性、特异性和 F1 分数等各种性能指标的分析。所提出的 EWDL-BFSN 模型在 CK+和 FER-2013 数据集上的总体准确率分别达到了 99.37%和 99.25%,证明了其在预测面部情绪方面优于最先进的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验