University Medical Center Göttingen, Dpt. of Medical Informatics, Germany.
Charité-Universitätsmedizin Berlin, Institute of Medical Informatics, Germany.
Stud Health Technol Inform. 2024 Aug 22;316:1120-1124. doi: 10.3233/SHTI240607.
Secondary use of health data has become an emerging topic in medical informatics. Many initiatives focus on clinical routine data, but clinical trial data has complementary strengths regarding highly structured documentation and mandatory data quality (DQ) reviews during the implementation. Clinical imaging trials investigate new imaging methods and procedures. Recently, DQ frameworks for structured data were proposed for harmonized quality assessments (QA). In this article, we investigate the application of these concepts to imaging trials and how a DQ framework could be defined for secondary use scenarios. We conclude that image quality can be assessed through both pixel data and metadata, and the latter can mostly be handled like structured study documentation in QA. For pixel data, typical quality indicators can be mapped to existing frameworks, but require additional image processing. Specific attention needs to be drawn to complete de-identification of imaging data, both on pixel data and metadata level.
医疗数据的二次利用已经成为医学信息学中的一个新兴话题。许多举措都集中在临床常规数据上,但临床试验数据在高度结构化的文档和实施过程中的强制性数据质量 (DQ) 审查方面具有互补优势。临床影像学试验研究新的影像学方法和程序。最近,针对结构化数据的 DQ 框架已被提议用于进行协调一致的质量评估 (QA)。在本文中,我们研究了这些概念在影像学试验中的应用,以及如何为二次使用场景定义 DQ 框架。我们的结论是,可以通过像素数据和元数据来评估图像质量,并且后者在 QA 中可以像结构化研究文档一样进行处理。对于像素数据,可以将典型的质量指标映射到现有框架,但需要额外的图像处理。需要特别注意的是,无论是在像素数据还是元数据级别,都需要对影像学数据进行完整的去识别化处理。