Suppr超能文献

将 OMOP-CDM 映射到 RDF:将真实世界的数据带入语义网领域。

Mapping OMOP-CDM to RDF: Bringing Real-World-Data to the Semantic Web Realm.

机构信息

Institute of Applied Biosciences, Centre for Research and Technology Hellas, Greece.

School of Informatics, Aristotle University of Thessaloniki, Greece.

出版信息

Stud Health Technol Inform. 2024 Aug 22;316:1406-1410. doi: 10.3233/SHTI240674.

Abstract

Real-world data (RWD) (i.e., data from Electronic Healthcare Records - EHRs, ePrescription systems, patient registries, etc.) gain increasing attention as they could support observational studies on a large scale. OHDSI is one of the most prominent initiatives regarding the harmonization of RWD and the development of relevant tools via the use of a common data model, OMOP-CDM. OMOP-CDM is a crucial step towards syntactic and semantic data interoperability. Still, OMOP-CDM is based on a typical relational database format, and thus, the vision of a fully connected semantically enriched model is not fully realized. This work presents an open-source effort to map the OMOP-CDM model and the data it hosts, to an ontological model using RDF to support the FAIRness of RWD and their interlinking with Linked Open Data (LOD) towards the vision of the Semantic Web.

摘要

真实世界数据(RWD)(即来自电子医疗记录 - EHRs、电子处方系统、患者登记等的数据)越来越受到关注,因为它们可以支持大规模的观察性研究。OHDSI 是关于 RWD 协调以及通过使用通用数据模型 OMOP-CDM 开发相关工具的最突出的倡议之一。OMOP-CDM 是实现语法和语义数据互操作性的关键步骤。尽管如此,OMOP-CDM 基于典型的关系型数据库格式,因此,完全实现语义丰富的连接模型的愿景尚未完全实现。这项工作提出了一种使用 RDF 将 OMOP-CDM 模型及其托管的数据映射到本体模型的开源工作,以支持 RWD 的 FAIRness 及其与链接开放数据(LOD)的互联,以实现语义网的愿景。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验