Suppr超能文献

全球肺动脉高压深度表型注册研究的数据整合——经验教训。

Data Integration for a Global Deep-Phenotyping Registry for Pulmonary Hypertension - Lessons Learned.

机构信息

Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Germany.

Institute for Lung Health, Cardio-Pulmonary Institute, Giessen, Germany.

出版信息

Stud Health Technol Inform. 2024 Aug 22;316:334-338. doi: 10.3233/SHTI240412.

Abstract

The integration of data from various healthcare centers into disease registries is pivotal for facilitating collaborative research and enhancing clinical insights. In this study, we investigate the integration process of existing registries into the PVRI GoDeep meta-registry, focusing on the complexities and challenges encountered. We detail the integration process, including data transformation, mapping updates, and feedback mechanisms. Our findings underscore the importance of standardized processes and proactive communication in addressing data quality issues, ultimately enhancing the reliability and trustworthiness of meta-registry data. Through careful harmonization of the data and transparent documentation of data processing, we pave the way for leveraging registry data to drive advancements in pulmonary hypertension research and patient care.

摘要

将来自不同医疗中心的数据整合到疾病登记处对于促进合作研究和增强临床见解至关重要。在这项研究中,我们研究了现有登记处整合到 PVRI GoDeep 元登记处的过程,重点关注所遇到的复杂性和挑战。我们详细介绍了整合过程,包括数据转换、映射更新和反馈机制。我们的研究结果强调了在解决数据质量问题方面标准化流程和主动沟通的重要性,最终提高了元登记处数据的可靠性和可信度。通过仔细协调数据和透明记录数据处理过程,我们为利用登记处数据推动肺动脉高压研究和患者护理的进展铺平了道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验