Suppr超能文献

使用 EEG-EDA 耦合和可解释分类器评估效价情绪状态。

Assessment of Valance Emotional State Using EEG-EDA Coupling and Explainable Classifiers.

机构信息

Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai 600036, India.

Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana 502284, India.

出版信息

Stud Health Technol Inform. 2024 Aug 22;316:953-957. doi: 10.3233/SHTI240569.

Abstract

Emotion influences human life and impacts daily life activities. During emotional processes, physiological signals interact with each other instead of functioning separately. Although unimodal and multimodal approaches have been explored for emotion classification, there is a lack of inclusion of central and peripheral nervous system signal interaction-based approaches. In this study, an attempt has been made to characterize valance emotional states using Electroencephalogram (EEG)- Electrodermal activity (EDA) based coupling. For this, multimodal signals are obtained from the publicly available DEAP database (n=32 subjects). The EEG signals are decomposed into θ, α, β, and bands and EDA signals are decomposed into phasic and tonic components. Then two EEG, three EDA, and two EEG-EDA coupling-based features are extracted and applied to three classifiers namely Random Forest (RF), Linear discriminant analysis, and Adaptive boosting. In addition, SHAP analysis is performed to explain classifiers' performance with respect to features. The result shows that the proposed approach is able to classify valence emotional states. The feature combination of EEG, EDA, and EEG-EDA coupling-based features with an RF classifier performs best with an F1-score of 68.21%. SHAP analysis in frontal electrodes with γ band obtained better discrimination among different valance states. This study underscores the significance of the coupling studies of EEG with EDA in classifying emotion. Therefore, the proposed approach can be extended to emotional state assessment in clinical settings.

摘要

情绪影响着人类的生活,影响着日常生活活动。在情绪过程中,生理信号相互作用,而不是单独作用。虽然已经探索了单模态和多模态方法来进行情绪分类,但缺乏基于中枢和外周神经系统信号相互作用的方法。在这项研究中,我们试图使用基于脑电图(EEG)-皮肤电活动(EDA)的耦合来描述效价情绪状态。为此,从公开的 DEAP 数据库(n=32 个被试)中获取多模态信号。EEG 信号被分解为θ、α、β 和频段,EDA 信号被分解为相位和紧张成分。然后提取两个 EEG、三个 EDA 和两个 EEG-EDA 耦合的特征,并应用于三个分类器,即随机森林(RF)、线性判别分析和自适应提升。此外,还进行了 SHAP 分析,以解释特征相对于分类器的性能。结果表明,所提出的方法能够对效价情绪状态进行分类。EEG、EDA 和 EEG-EDA 耦合特征与 RF 分类器的特征组合表现最佳,F1 得分为 68.21%。使用γ频段的额叶电极进行 SHAP 分析,可以更好地区分不同的效价状态。这项研究强调了 EEG 与 EDA 耦合研究在情绪分类中的重要性。因此,该方法可以扩展到临床环境中的情绪状态评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验