Huang Biao, Zhang Shiwen, Wan Chengan, Liang Xiaoqiang, Zhang Feng, Feng Lei, Wen Chen
College of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China.
Beijing Spacecrafts Manufacturing Factory, Beijing 100094, P. R. China.
Inorg Chem. 2024 Sep 9;63(36):16688-16701. doi: 10.1021/acs.inorgchem.4c01995. Epub 2024 Aug 23.
There has been a steady growth of interest in proton-conductive metal-organic frameworks (MOFs) due to their potential utility in proton-exchange membrane fuel cells. To attain a super proton conductivity (>1 × 10 S cm) in a MOF-based proton conductor is a key step toward practical application. Currently, most studies are focused on enhancing the proton conductivity of porous MOFs by controlling a single factor, such as the type of protons or hydrophilic pore or hydrogen bond. However, a limited contribution from a single factor cannot afford to remarkably increase the proton conductivity of the MOF and form a super proton conductor. Herein, we constructed two distinct porous MOFs, {(HO)[Cu(ci)(OH)(HO)]·3HO·9DMF} (Cu-ci-3D, Hci = 1-indazole-5-carboxylic acid, DMF = ,'-dimethylformamide) and {[Co(Hppca)]·2HN(CH)·CHOH·2HO} (Co-ppca-2D, Hppca = 5-(pyridin-3-yl)-1-pyrazole-3-carboxylic acid), to tune their proton conductivities at high relative humidity (RH) using the combined effect of hydrophilic pore and the type of protons, ultimately achieving super proton conduction. Excitingly, Cu-ci-3D indeed harvests a super proton conductivity of 1.37 × 10 S cm at 353 K and ∼97% RH, superior to some previously reported MOF-based proton conductors. The results present a unique perspective for developing high-performance MOF-based proton conductors and understanding their structure-performance relationships.
由于质子传导金属有机框架(MOFs)在质子交换膜燃料电池中的潜在应用,人们对其兴趣一直在稳步增长。在基于MOF的质子导体中实现超质子传导率(>1×10 S/cm)是迈向实际应用的关键一步。目前,大多数研究集中在通过控制单一因素来提高多孔MOF的质子传导率,例如质子类型、亲水性孔或氢键。然而,单一因素的贡献有限,无法显著提高MOF的质子传导率并形成超质子导体。在此,我们构建了两种不同的多孔MOF,{(HO)[Cu(ci)(OH)(HO)]·3HO·9DMF}(Cu-ci-3D,Hci = 1-吲唑-5-羧酸,DMF = N,N'-二甲基甲酰胺)和{[Co(Hppca)]·2HN(CH)·CHOH·2HO}(Co-ppca-2D,Hppca = 5-(吡啶-3-基)-1-吡唑-3-羧酸),利用亲水性孔和质子类型的综合效应在高相对湿度(RH)下调节它们的质子传导率,最终实现超质子传导。令人兴奋的是,Cu-ci-3D在353 K和~97% RH下确实获得了1.37×10 S/cm的超质子传导率,优于一些先前报道的基于MOF的质子导体。这些结果为开发高性能基于MOF的质子导体及其结构-性能关系的理解提供了独特的视角。