Suppr超能文献

整合内皮切应力机械转导的分子和细胞成分。

Integrating molecular and cellular components of endothelial shear stress mechanotransduction.

机构信息

NextGen Precision Health, University of Missouri, Columbia, Missouri, United States.

Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States.

出版信息

Am J Physiol Heart Circ Physiol. 2024 Oct 1;327(4):H989-H1003. doi: 10.1152/ajpheart.00431.2024. Epub 2024 Aug 23.

Abstract

The lining of blood vessels is constantly exposed to mechanical forces exerted by blood flow against the endothelium. Endothelial cells detect these tangential forces (i.e., shear stress), initiating a host of intracellular signaling cascades that regulate vascular physiology. Thus, vascular health is tethered to the endothelial cells' capacity to transduce shear stress. Indeed, the mechanotransduction of shear stress underlies a variety of cardiovascular benefits, including some of those associated with increased physical activity. However, endothelial mechanotransduction is impaired in aging and disease states such as obesity and type 2 diabetes, precipitating the development of vascular disease. Understanding endothelial mechanotransduction of shear stress, and the molecular and cellular mechanisms by which this process becomes defective, is critical for the identification and development of novel therapeutic targets against cardiovascular disease. In this review, we detail the primary mechanosensitive structures that have been implicated in detecting shear stress, including junctional proteins such as platelet endothelial cell adhesion molecule-1 (PECAM-1), the extracellular glycocalyx and its components, and ion channels such as piezo1. We delineate which molecules are truly mechanosensitive and which may simply be indispensable for the downstream transmission of force. Furthermore, we discuss how these mechanosensors interact with other cellular structures, such as the cytoskeleton and membrane lipid rafts, which are implicated in translating shear forces to biochemical signals. Based on findings to date, we also seek to integrate these cellular and molecular mechanisms with a view of deciphering endothelial mechanotransduction of shear stress, a tenet of vascular physiology.

摘要

血管的衬里不断受到血流施加于内皮的切向力(即剪切力)的机械力的作用。内皮细胞检测到这些切向力,引发一系列调节血管生理的细胞内信号级联反应。因此,血管健康与内皮细胞传递剪切力的能力息息相关。事实上,剪切力的机械转导是多种心血管益处的基础,包括与增加身体活动相关的益处。然而,在衰老和肥胖症、2 型糖尿病等疾病状态下,内皮细胞的机械转导受损,导致血管疾病的发生。了解内皮细胞对剪切力的机械转导以及这一过程出现缺陷的分子和细胞机制,对于确定和开发针对心血管疾病的新型治疗靶点至关重要。在这篇综述中,我们详细介绍了主要的机械敏感结构,这些结构被认为与检测剪切力有关,包括连接蛋白,如血小板内皮细胞黏附分子-1(PECAM-1)、细胞外糖萼及其成分以及离子通道,如 piezo1。我们阐明了哪些分子真正具有机械敏感性,哪些分子可能仅仅是力的下游传递所必需的。此外,我们还讨论了这些机械感受器如何与其他细胞结构相互作用,如细胞骨架和膜脂筏,这些结构与将剪切力转化为生化信号有关。基于迄今为止的研究结果,我们还试图将这些细胞和分子机制与内皮细胞对剪切力的机械转导结合起来,这是血管生理学的一个原则。

相似文献

1
Integrating molecular and cellular components of endothelial shear stress mechanotransduction.整合内皮切应力机械转导的分子和细胞成分。
Am J Physiol Heart Circ Physiol. 2024 Oct 1;327(4):H989-H1003. doi: 10.1152/ajpheart.00431.2024. Epub 2024 Aug 23.
2
Mechanosensing by Vascular Endothelium.血管内皮细胞的机械传感
Annu Rev Physiol. 2024 Feb 12;86:71-97. doi: 10.1146/annurev-physiol-042022-030946. Epub 2023 Oct 20.
8
Endothelial Mechanosignaling: Does One Sensor Fit All?内皮机械信号传导:一种传感器能适用于所有情况吗?
Antioxid Redox Signal. 2016 Sep 1;25(7):373-88. doi: 10.1089/ars.2015.6493. Epub 2016 Mar 30.
9
Mechanotransduction and the glycocalyx.机械转导与糖萼
J Intern Med. 2006 Apr;259(4):339-50. doi: 10.1111/j.1365-2796.2006.01620.x.

本文引用的文献

3
Neuraminidase inhibition improves endothelial function in diabetic mice.神经氨酸酶抑制可改善糖尿病小鼠的内皮功能。
Am J Physiol Heart Circ Physiol. 2023 Dec 1;325(6):H1337-H1353. doi: 10.1152/ajpheart.00337.2023. Epub 2023 Oct 6.
5
Patching up a degraded endothelial glycocalyx in sepsis.修复脓毒症中降解的内皮糖萼。
Am J Physiol Heart Circ Physiol. 2023 Oct 1;325(4):H673-H674. doi: 10.1152/ajpheart.00499.2023. Epub 2023 Aug 18.
8
Vascular mechanotransduction.血管力学转导。
Physiol Rev. 2023 Apr 1;103(2):1247-1421. doi: 10.1152/physrev.00053.2021. Epub 2023 Jan 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验