Song Yingjie, Liu Zhi, Li Gongyang, Xie Jiawei, Wu Qiang, Zeng Dan, Xu Lihua, Zhang Tianhong, Wang Jijun
IEEE Trans Neural Netw Learn Syst. 2025 May;36(5):9451-9462. doi: 10.1109/TNNLS.2024.3441928. Epub 2025 May 2.
Schizophrenia (SZ) is a common and disabling mental illness, and most patients encounter cognitive deficits. The eye-tracking technology has been increasingly used to characterize cognitive deficits for its reasonable time and economic costs. However, there is no large-scale and publicly available eye movement dataset and benchmark for SZ recognition. To address these issues, we release a large-scale Eye Movement dataset for SZ recognition (EMS), which consists of eye movement data from 104 schizophrenics and 104 healthy controls (HCs) based on the free-viewing paradigm with 100 stimuli. We also conduct the first comprehensive benchmark, which has been absent for a long time in this field, to compare the related 13 psychosis recognition methods using six metrics. Besides, we propose a novel mean-shift-based network (MSNet) for eye movement-based SZ recognition, which elaborately combines the mean shift algorithm with convolution to extract the cluster center as the subject feature. In MSNet, first, a stimulus feature branch (SFB) is adopted to enhance each stimulus feature with similar information from all stimulus features, and then, the cluster center branch (CCB) is utilized to generate the cluster center as subject feature and update it by the mean shift vector. The performance of our MSNet is superior to prior contenders, thus, it can act as a powerful baseline to advance subsequent study. To pave the road in this research field, the EMS dataset, the benchmark results, and the code of MSNet are publicly available at https://github.com/YingjieSong1/EMS.
精神分裂症(SZ)是一种常见且致残的精神疾病,大多数患者存在认知缺陷。眼动追踪技术因其合理的时间和经济成本,越来越多地被用于表征认知缺陷。然而,目前尚无用于SZ识别的大规模且公开可用的眼动数据集和基准。为了解决这些问题,我们发布了一个用于SZ识别的大规模眼动数据集(EMS),它由104名精神分裂症患者和104名健康对照(HCs)基于自由观看范式下对100个刺激的眼动数据组成。我们还进行了该领域长期缺失的首个全面基准测试,使用六个指标比较了13种相关的精神病识别方法。此外,我们提出了一种用于基于眼动的SZ识别的新型基于均值漂移的网络(MSNet),它精心地将均值漂移算法与卷积相结合,以提取聚类中心作为主体特征。在MSNet中,首先,采用刺激特征分支(SFB)利用所有刺激特征中的相似信息增强每个刺激特征,然后,利用聚类中心分支(CCB)生成聚类中心作为主体特征,并通过均值漂移向量对其进行更新。我们的MSNet性能优于先前的竞争者,因此,它可以作为推进后续研究的有力基线。为了在该研究领域铺平道路,EMS数据集、基准测试结果和MSNet代码可在https://github.com/YingjieSong1/EMS上公开获取。