Liu Zibin, Guan Banglei, Shang Yang, Yu Qifeng, Kneip Laurent
IEEE Trans Image Process. 2024;33:4765-4780. doi: 10.1109/TIP.2024.3445736. Epub 2024 Aug 30.
Pose estimation and tracking of objects is a fundamental application in 3D vision. Event cameras possess remarkable attributes such as high dynamic range, low latency, and resilience against motion blur, which enables them to address challenging high dynamic range scenes or high-speed motion. These features make event cameras an ideal complement over standard cameras for object pose estimation. In this work, we propose a line-based robust pose estimation and tracking method for planar or non-planar objects using an event camera. Firstly, we extract object lines directly from events, then provide an initial pose using a globally-optimal Branch-and-Bound approach, where 2D-3D line correspondences are not known in advance. Subsequently, we utilize event-line matching to establish correspondences between 2D events and 3D models. Furthermore, object poses are refined and continuously tracked by minimizing event-line distances. Events are assigned different weights based on these distances, employing robust estimation algorithms. To evaluate the precision of the proposed methods in object pose estimation and tracking, we have devised and established an event-based moving object dataset. Compared against state-of-the-art methods, the robustness and accuracy of our methods have been validated both on synthetic experiments and the proposed dataset. The source code is available at https://github.com/Zibin6/LOPET.
物体的姿态估计和跟踪是三维视觉中的一项基础应用。事件相机具有高动态范围、低延迟以及抗运动模糊等显著特性,这使其能够处理具有挑战性的高动态范围场景或高速运动。这些特性使得事件相机成为标准相机在物体姿态估计方面的理想补充。在这项工作中,我们提出了一种基于线的鲁棒姿态估计和跟踪方法,用于使用事件相机对平面或非平面物体进行姿态估计和跟踪。首先,我们直接从事件中提取物体的线条,然后使用全局最优的分支定界方法提供初始姿态,其中二维到三维的线条对应关系事先未知。随后,我们利用事件线匹配在二维事件和三维模型之间建立对应关系。此外,通过最小化事件线距离来细化物体姿态并持续跟踪。根据这些距离为事件分配不同的权重,并采用鲁棒估计算法。为了评估所提出方法在物体姿态估计和跟踪方面的精度,我们设计并建立了一个基于事件的运动物体数据集。与现有方法相比,我们方法的鲁棒性和准确性在合成实验和所提出的数据集上均得到了验证。源代码可在https://github.com/Zibin6/LOPET获取。