IEEE Trans Image Process. 2024;33:5783-5797. doi: 10.1109/TIP.2024.3445735. Epub 2024 Oct 15.
Subspace-based models have been extensively employed in unsupervised segmentation and completion of human motion sequence (HMS). However, existing approaches often neglect the incorporation of temporal priors embedded in HMS, resulting in suboptimal results. This paper presents a subspace variety model for HMS, along with an innovative Temporal Learning of Subspace Variety Model (TL-SVM) method for enhanced segmentation and completion in HMS. The key idea is to segment incomplete HMS into motion clusters and extracting the subspace features of each motion through the temporal learning of the subspace variety model. Subsequently, the HMS is completed based on the extracted subspace features. Thus, the main challenge is to learn the subspace variety model with temporal priors when confronted with missing entries. To tackle this, the paper develops a spatio-temporal assignment consistency (STAC) constraint for the subspace variety model, leveraging temporal priors embedded in HMS. In addition, a subspace clustering approach under the STAC constraint is proposed to learn the subspace variety model by extracting subspace features from HMS and segmenting HMS into motion clusters alternatively. The proposed subspace clustering model can also handle missing entries with theoretical guarantees. Furthermore, the missing entries of HMS are completed by minimizing the distance between each human motion frame and its corresponding subspace. Extensive experimental results, along with comparisons to state-of-the-art methods on four benchmark datasets, underscore the advantages of the proposed method.
基于子空间的模型已被广泛应用于人类运动序列 (HMS) 的无监督分割和完成。然而,现有的方法往往忽略了 HMS 中嵌入的时间先验信息,导致结果不理想。本文提出了一种 HMS 的子空间变化模型,并提出了一种新颖的 HMS 分割和完成的时空学习子空间变化模型 (TL-SVM) 方法。其关键思想是通过子空间变化模型的时间学习,将不完整的 HMS 分割成运动簇,并提取每个运动的子空间特征。然后,根据提取的子空间特征完成 HMS。因此,主要的挑战是在存在缺失项的情况下学习具有时间先验的子空间变化模型。为了解决这个问题,本文为子空间变化模型开发了一种时空分配一致性 (STAC) 约束,利用 HMS 中嵌入的时间先验信息。此外,还提出了一种基于 STAC 约束的子空间聚类方法,通过从 HMS 中提取子空间特征并交替地将 HMS 分割成运动簇,从而学习子空间变化模型。所提出的子空间聚类模型还可以在理论上保证处理缺失项。此外,通过最小化每个人体运动帧与其相应子空间之间的距离来完成 HMS 的缺失项。在四个基准数据集上进行的广泛实验结果以及与最先进方法的比较,突出了所提出方法的优势。