Suppr超能文献

监督式机器学习从生态瞬时评估和传感器数据预测吸烟复吸:对即时自适应干预开发的启示。

Supervised machine learning to predict smoking lapses from Ecological Momentary Assessments and sensor data: Implications for just-in-time adaptive intervention development.

作者信息

Perski Olga, Kale Dimitra, Leppin Corinna, Okpako Tosan, Simons David, Goldstein Stephanie P, Hekler Eric, Brown Jamie

机构信息

Faculty of Social Sciences, Tampere University, Finland.

Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, California, United States of America.

出版信息

PLOS Digit Health. 2024 Aug 23;3(8):e0000594. doi: 10.1371/journal.pdig.0000594. eCollection 2024 Aug.

Abstract

Specific moments of lapse among smokers attempting to quit often lead to full relapse, which highlights a need for interventions that target lapses before they might occur, such as just-in-time adaptive interventions (JITAIs). To inform the decision points and tailoring variables of a lapse prevention JITAI, we trained and tested supervised machine learning algorithms that use Ecological Momentary Assessments (EMAs) and wearable sensor data of potential lapse triggers and lapse incidence. We aimed to identify a best-performing and feasible algorithm to take forwards in a JITAI. For 10 days, adult smokers attempting to quit were asked to complete 16 hourly EMAs/day assessing cravings, mood, activity, social context, physical context, and lapse incidence, and to wear a Fitbit Charge 4 during waking hours to passively collect data on steps and heart rate. A series of group-level supervised machine learning algorithms (e.g., Random Forest, XGBoost) were trained and tested, without and with the sensor data. Their ability to predict lapses for out-of-sample (i) observations and (ii) individuals were evaluated. Next, a series of individual-level and hybrid (i.e., group- and individual-level) algorithms were trained and tested. Participants (N = 38) responded to 6,124 EMAs (with 6.9% of responses reporting a lapse). Without sensor data, the best-performing group-level algorithm had an area under the receiver operating characteristic curve (AUC) of 0.899 (95% CI = 0.871-0.928). Its ability to classify lapses for out-of-sample individuals ranged from poor to excellent (AUCper person = 0.524-0.994; median AUC = 0.639). 15/38 participants had adequate data for individual-level algorithms to be constructed, with a median AUC of 0.855 (range: 0.451-1.000). Hybrid algorithms could be constructed for 25/38 participants, with a median AUC of 0.692 (range: 0.523 to 0.998). With sensor data, the best-performing group-level algorithm had an AUC of 0.952 (95% CI = 0.933-0.970). Its ability to classify lapses for out-of-sample individuals ranged from poor to excellent (AUCper person = 0.494-0.979; median AUC = 0.745). 11/30 participants had adequate data for individual-level algorithms to be constructed, with a median AUC of 0.983 (range: 0.549-1.000). Hybrid algorithms could be constructed for 20/30 participants, with a median AUC of 0.772 (range: 0.444 to 0.968). In conclusion, high-performing group-level lapse prediction algorithms without and with sensor data had variable performance when applied to out-of-sample individuals. Individual-level and hybrid algorithms could be constructed for a limited number of individuals but had improved performance, particularly when incorporating sensor data for participants with sufficient wear time. Feasibility constraints and the need to balance multiple success criteria in the JITAI development and implementation process are discussed.

摘要

试图戒烟的吸烟者在特定时刻的复吸往往会导致完全复发,这凸显了在复吸可能发生之前进行干预的必要性,例如即时自适应干预(JITAIs)。为了确定预防复吸JITAI的决策点和个性化变量,我们训练并测试了监督机器学习算法,这些算法使用生态瞬时评估(EMA)以及潜在复吸触发因素和复吸发生率的可穿戴传感器数据。我们旨在确定一种性能最佳且可行的算法,以便在JITAI中推进。连续10天,要求试图戒烟的成年吸烟者每天完成16次每小时一次的EMA,评估渴望程度、情绪、活动、社交环境、身体环境和复吸发生率,并在清醒时间佩戴Fitbit Charge 4,以被动收集步数和心率数据。训练并测试了一系列组级监督机器学习算法(如随机森林、XGBoost),分别使用和不使用传感器数据。评估了它们对样本外(i)观察结果和(ii)个体进行复吸预测的能力。接下来,训练并测试了一系列个体级和混合(即组级和个体级)算法。参与者(N = 38)对6124次EMA做出了回应(6.9%的回应报告有复吸情况)。在没有传感器数据的情况下,性能最佳的组级算法在受试者工作特征曲线下面积(AUC)为0.899(95%置信区间 = 0.871 - 0.928)。其对样本外个体进行复吸分类的能力从差到优不等(每人AUC = 0.524 - 0.994;中位数AUC = 0.639)。38名参与者中有15名有足够的数据用于构建个体级算法,中位数AUC为0.855(范围:0.451 - 1.000)。可以为38名参与者中的25名构建混合算法,中位数AUC为0.692(范围:0.523至0.998)。在有传感器数据的情况下,性能最佳的组级算法的AUC为0.952(95%置信区间 = 0.933 - 0.970)。其对样本外个体进行复吸分类的能力从差到优不等(每人AUC = 0.494 - 0.979;中位数AUC = 0.745)。30名参与者中有11名有足够的数据用于构建个体级算法,中位数AUC为0.983(范围:0.549 - 1.000)。可以为30名参与者中的20名构建混合算法,中位数AUC为0.772(范围:0.444至0.968)。总之,在应用于样本外个体时,有和没有传感器数据的高性能组级复吸预测算法表现各异。可以为有限数量的个体构建个体级和混合算法,但性能有所提高,特别是在将传感器数据纳入佩戴时间足够的参与者时。讨论了JITAI开发和实施过程中的可行性限制以及平衡多个成功标准的必要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1e3/11343380/2878eb24a90c/pdig.0000594.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验