Suppr超能文献

氟化纳米沸石咪唑酯骨架作为机械能存储的潜在装置

Fluorinated Nanosized Zeolitic-Imidazolate Frameworks as Potential Devices for Mechanical Energy Storage.

作者信息

Amayuelas Eder, Farrando-Perez Judit, Missyul Alexander, Grosu Yaroslav, Silvestre-Albero Joaquin, Carrillo-Carrión Carolina

机构信息

Centre for Cooperative Research on Alternative Energies (CIC EnergiGUNE), Basque Research and Technology Alliance (BRTA), 01510 Vitoria-Gazteiz, Spain.

Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica-Instituto Universitario de Materiales, Universidad de Alicante, 03690 San Vicente del Raspeig, Spain.

出版信息

ACS Appl Mater Interfaces. 2024 Sep 4;16(35):46374-46383. doi: 10.1021/acsami.4c09969. Epub 2024 Aug 23.

Abstract

Fluorination is one of the most efficient and universal strategies to increase the hydrophobicity of materials and consequently their water stability. Zeolitic-imidazolate frameworks (ZIFs), which have limited stability in aqueous media and even lower stability when synthesized on a nanometric scale, can greatly benefit from the incorporation of fluorine atoms, not only to improve their stability but also to provide additional properties. Herein, we report the preparation of two different fluorinated ZIFs through a simple and scalable approach by using mixed ligands [2-methylimidazole, as a common ligand, and 4-(4-fluorophenyl)-1-imidazole ( linker) or 2-methyl-5-(trifluoromethyl)-1-imidazole ( linker) as a dopant], demonstrating the high versatility of the synthetic method developed to incorporate different fluorine-containing imidazole-based ligands. Second, we demonstrate that these nanoscale fluorinated ZIFs outperform the pristine ZIF-8 for water intrusion/extrusion, i.e., for storing mechanical energy via forced intrusion of nonwetting water due to the improved hydrophobicity and modified framework dynamics. Moreover, we also show that by varying the nature of the F-imidazole ligand, the performance of the resulting ZIFs, including the pressure thresholds and stored/dissipated energy, can be finely tuned, thus opening the path for the design of a library of fluorine-modified ZIFs with unique behavior.

摘要

氟化是提高材料疏水性从而增强其水稳定性的最有效且通用的策略之一。沸石咪唑酯骨架材料(ZIFs)在水性介质中稳定性有限,在纳米尺度合成时稳定性更低,引入氟原子可使其受益匪浅,这不仅能提高其稳定性,还能赋予额外性能。在此,我们报道了通过一种简单且可扩展的方法,使用混合配体[2 - 甲基咪唑作为常见配体,4 -(4 - 氟苯基)-1 - 咪唑(连接体)或2 - 甲基 - 5 -(三氟甲基)-1 - 咪唑(连接体)作为掺杂剂]制备两种不同的氟化ZIFs,证明了所开发的合成方法在引入不同含氟咪唑基配体方面具有高度通用性。其次,我们证明这些纳米级氟化ZIFs在水侵入/挤出方面优于原始的ZIF - 8,即由于疏水性提高和骨架动力学改变,在通过强制引入非润湿性水来存储机械能方面表现更优。此外,我们还表明,通过改变F - 咪唑配体的性质,可以精细调节所得ZIFs的性能,包括压力阈值以及存储/耗散的能量,从而为设计具有独特性能的氟改性ZIFs库开辟了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef00/11378149/8272ee778640/am4c09969_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验