Suppr超能文献

Toward Onboard Proportional Control of Multi-Chamber Soft Pneumatic Robots: A Magnetorheological Elastomer Valve Array.

作者信息

Wang Sihan, Zhang Peizhi, He Liang, Maiolino Perla

机构信息

Department of Engineering Science, University of Oxford, Oxford, United Kingdom.

Department of Modern Mechanical Engineering, Graduate Program for Embodiment Informatics for Leading Graduate Schools, Waseda University, Shinjuku, Japan.

出版信息

Soft Robot. 2024 Aug;11(4):617-627. doi: 10.1089/soro.2023.0049. Epub 2024 Apr 4.

Abstract

Soft pneumatic actuators (SPAs) are commonly used in various applications because of their structural compliance, low cost, ease of manufacture, high adaptability, and safe human-robot interaction. The traditional approach for achieving proportional control of soft pneumatic robots requires the use of industrial proportional valves or syringe drivers, which are not only rigid and bulky but also hard to be integrated into the body of soft robots. In our previous research, we developed a Magnetorheological elastomer (MRE)-based soft valve that showed advantages for controlling SPAs due to its compliance, compactness, robustness, and compatibility for continuous pressure modulation. Modern soft robots with multiple chambers require more MRE valves onboard for their control. However, merely packing more MRE valves for soft robots can cause problems like magnetic interference, flow rate deviation, and overheating. Therefore, in this study, we proposed a two-dimensional MRE valve array design to solve issues of magnetic interference and overheating when expanding from a single MRE proportional valve into an integrated array. The magnetic interference and the overheating problem were investigated through multiphysics simulation, bringing the optimal choice of valve spacing (1.2 times the single valve diameter), magnetic coil pole arrangement (same pole), and the cooling system design (internal cooling chamber with flowing water). Physical experiments showed that our MRE valve array maintained its original flowrate performance with low magnetic interference (0.89 mT) and low coil temperature (under 73.9°C for 5 min).

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验