Suppr超能文献

基于立体脑电图的癫痫手术临床决策中癫痫发作匹配系统的开发。

Development of a stereo-EEG based seizure matching system for clinical decision making in epilepsy surgery.

机构信息

Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec H3A 2B4, Canada.

Department of Biomedical Engineering, Duke Pratt School of Engineering, Durham, NC, United States of America.

出版信息

J Neural Eng. 2024 Oct 4;21(5). doi: 10.1088/1741-2552/ad7323.

Abstract

The proportion of patients becoming seizure-free after epilepsy surgery has stagnated. Large multi-center stereo-electroencephalography (SEEG) datasets can allow comparing new patients to past similar cases and making clinical decisions with the knowledge of how cases were treated in the past. However, the complexity of these evaluations makes the manual search for similar patients impractical. We aim to develop an automated system that electrographically and anatomically matches seizures to those in a database. Additionally, since features that define seizure similarity are unknown, we evaluate the agreement and features among experts in classifying similarity.We utilized 320 SEEG seizures from 95 consecutive patients who underwent epilepsy surgery. Eight international experts evaluated seizure-pair similarity using a four-level similarity score. As our primary outcome, we developed and validated an automated seizure matching system by employing patient data marked by independent experts. Secondary outcomes included the inter-rater agreement (IRA) and features for classifying seizure similarity.The seizure matching system achieved a median area-under-the-curve of 0.76 (interquartile range, 0.1), indicating its feasibility. Six distinct seizure similarity features were identified and proved effective: onset region, onset pattern, propagation region, duration, extent of spread, and propagation speed. Among these features, the onset region showed the strongest correlation with expert scores (Spearman's rho = 0.75,< 0.001). Additionally, the moderate IRA confirmed the practicality of our approach with an agreement of 73.9% (7%), and Gwet's kappa of 0.45 (0.16). Further, the interoperability of the system was validated on seizures from five centers.We demonstrated the feasibility and validity of a SEEG seizure matching system across patients, effectively mirroring the expertise of epileptologists. This novel system can identify patients with seizures similar to that of a patient being evaluated, thus optimizing the treatment plan by considering the results of treating similar patients in the past, potentially improving surgery outcome.

摘要

癫痫手术后患者无癫痫发作的比例停滞不前。大型多中心立体脑电图(SEEG)数据集可以比较新患者与过去类似病例,并利用过去治疗病例的知识做出临床决策。然而,这些评估的复杂性使得手动搜索相似患者变得不切实际。我们旨在开发一种自动系统,该系统可以对电描记图和解剖学上的癫痫发作与数据库中的发作进行匹配。此外,由于定义癫痫发作相似性的特征未知,我们评估了专家在分类相似性方面的一致性和特征。

我们利用了 95 例连续接受癫痫手术的患者的 320 例 SEEG 癫痫发作。8 位国际专家使用四级相似性评分对癫痫发作对的相似性进行评估。作为我们的主要结果,我们通过使用独立专家标记的患者数据开发并验证了一种自动癫痫发作匹配系统。次要结果包括组内一致性(IRA)和用于分类癫痫发作相似性的特征。

癫痫发作匹配系统的中位数曲线下面积为 0.76(四分位距,0.1),表明其具有可行性。确定了六个不同的癫痫发作相似性特征,并且证明这些特征是有效的:发作起始区、起始模式、传播区、持续时间、扩散程度和传播速度。在这些特征中,发作起始区与专家评分的相关性最强(Spearman 相关系数=0.75,<0.001)。此外,中度 IRA 以 73.9%(7%)的一致性和 Gwet 的 kappa 值 0.45(0.16)证实了我们方法的实用性。此外,还验证了该系统在五个中心的癫痫发作中的互操作性。

我们证明了 SEEG 癫痫发作匹配系统在患者中的可行性和有效性,有效地反映了癫痫专家的专业知识。该新型系统可以识别出与正在评估的患者相似的患者,从而通过考虑过去治疗类似患者的结果来优化治疗计划,从而提高手术结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验