Suppr超能文献

通过 COSMO-RS 预测药物-聚合物相容性。

Drug-polymer compatibility prediction via COSMO-RS.

机构信息

Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic.

Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic.

出版信息

Int J Pharm. 2024 Oct 25;664:124613. doi: 10.1016/j.ijpharm.2024.124613. Epub 2024 Aug 22.

Abstract

In this work, the solid-liquid equilibrium (SLE) curve for ten active pharmaceutical ingredients (APIs) with the polymer polyvinylpyrrolidone (PVP) K12 was purely predicted using the Conductor-like Screening Model for Real Solvents (COSMO-RS). In particular, two COSMO-RS-based strategies were followed (i.e., a traditional approach and an expedited approach), and their performances were compared. The veracity of the predicted SLE curves was assessed via a comparison with their respective SLE dataset that was obtained using the step-wise dissolution (S-WD) method. Overall, the COSMO-RS-based API-PVP K12 SLE curves were in satisfactory agreement with the S-WD-based data points. Of the twenty predicted SLE curves, only two were found to be in strong disagreement with the corresponding experimental values (both modeled using the expedited approach). Hence, it was recommended to use the traditional approach when predicting the API-polymer SLE curve. At the present moment, COSMO-RS may be an effective computational tool for the expeditious screening of API-polymer compatibility, particularly in the case of promising novel APIs, for which experimental datasets are likely limited or non-existent.

摘要

在这项工作中,使用溶剂化模型 COMSO-RS 纯粹预测了十种活性药物成分 (API) 与聚合物聚乙烯吡咯烷酮 (PVP) K12 的固液平衡 (SLE) 曲线。特别地,遵循了两种基于 COSMO-RS 的策略(即传统方法和加速方法),并比较了它们的性能。通过与使用逐步溶解 (S-WD) 方法获得的各自 SLE 数据集进行比较,评估了预测 SLE 曲线的准确性。总体而言,基于 COSMO-RS 的 API-PVP K12 SLE 曲线与 S-WD 数据点吻合良好。在预测的二十条 SLE 曲线中,只有两条与相应的实验值强烈不一致(均使用加速方法建模)。因此,建议在预测 API-聚合物 SLE 曲线时使用传统方法。目前,COSMO-RS 可能是一种有效的计算工具,可用于快速筛选 API-聚合物的相容性,特别是对于那些可能实验数据集有限或不存在的有前途的新型 API。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验