Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA.
Nat Immunol. 2024 Oct;25(10):1943-1958. doi: 10.1038/s41590-024-01943-5. Epub 2024 Aug 23.
The drivers of immune evasion are not entirely clear, limiting the success of cancer immunotherapies. Here we applied single-cell spatial and perturbational transcriptomics to delineate immune evasion in high-grade serous tubo-ovarian cancer. To this end, we first mapped the spatial organization of high-grade serous tubo-ovarian cancer by profiling more than 2.5 million cells in situ in 130 tumors from 94 patients. This revealed a malignant cell state that reflects tumor genetics and is predictive of T cell and natural killer cell infiltration levels and response to immune checkpoint blockade. We then performed Perturb-seq screens and identified genetic perturbations-including knockout of PTPN1 and ACTR8-that trigger this malignant cell state. Finally, we show that these perturbations, as well as a PTPN1/PTPN2 inhibitor, sensitize ovarian cancer cells to T cell and natural killer cell cytotoxicity, as predicted. This study thus identifies ways to study and target immune evasion by linking genetic variation, cell-state regulators and spatial biology.
免疫逃逸的驱动因素尚不完全清楚,这限制了癌症免疫疗法的成功。在这里,我们应用单细胞空间转录组学和扰动转录组学来描绘高级别浆液性卵巢癌中的免疫逃逸。为此,我们首先通过对来自 94 名患者的 130 个肿瘤中的超过 250 万个细胞进行原位分析,描绘了高级别浆液性卵巢癌的空间组织。这揭示了一种恶性细胞状态,反映了肿瘤遗传学,并预测了 T 细胞和自然杀伤细胞浸润水平以及对免疫检查点阻断的反应。然后,我们进行了 Perturb-seq 筛选,并鉴定了触发这种恶性细胞状态的遗传扰动,包括 PTPN1 和 ACTR8 的敲除。最后,我们表明这些扰动,以及 PTPN1/PTPN2 抑制剂,如预测的那样,使卵巢癌细胞对 T 细胞和自然杀伤细胞的细胞毒性敏感。因此,这项研究通过将遗传变异、细胞状态调节剂和空间生物学联系起来,确定了研究和靶向免疫逃逸的方法。