Suppr超能文献

机器学习方法有助于跨领域发现治疗方法。

Machine learning approaches enable the discovery of therapeutics across domains.

作者信息

Chhibbar Prabal, Das Jishnu

机构信息

Centre for Systems Immunology, Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Integrative Systems Biology PhD Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.

Centre for Systems Immunology, Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.

出版信息

Mol Ther. 2025 May 7;33(5):2269-2278. doi: 10.1016/j.ymthe.2025.04.001. Epub 2025 Apr 3.

Abstract

Multi-modal datasets have grown exponentially in the last decade. This has created an enormous demand for machine learning models that can predict complex outcomes by leveraging cellular, molecular, and humoral profiles. Corresponding inference of mechanisms can help to uncover new therapeutic targets. Here, we discuss how biological principles guide the design of predictive models and how interpretable machine learning can lead to novel mechanistic insights. We provide descriptions of multiple learning techniques and how suited they are to domain adaptations. Finally, we talk about broad learning capabilities of foundation models on large datasets and whether they can be used to provide meaningful inference about biological datasets.

摘要

在过去十年中,多模态数据集呈指数级增长。这就产生了对机器学习模型的巨大需求,这些模型能够通过利用细胞、分子和体液特征来预测复杂的结果。相应的机制推断有助于发现新的治疗靶点。在这里,我们讨论生物学原理如何指导预测模型的设计,以及可解释的机器学习如何能带来新的机制性见解。我们描述了多种学习技术及其对领域适应的适用性。最后,我们讨论基础模型在大型数据集上的广泛学习能力,以及它们是否可用于对生物数据集进行有意义的推断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验