Zhou Min, Zhang Yan, Li Hu, Li Zhengyi, Wang Su, Lu Xihong, Yang Song
State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China.
Anhui Provincial Key Laboratory of Advanced Catalysis and Energy Materials, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, China.
Angew Chem Int Ed Engl. 2025 Jan 10;64(2):e202414392. doi: 10.1002/anie.202414392. Epub 2024 Oct 25.
The thermodynamically and kinetically sluggish electrocatalytic C-N coupling from CO and NO is inert to initially take place while typically occurring after CO protonation, which severely dwindles urea efficiency and carbon atom economy. Herein, we report a single O-philic adsorption strategy to facilitate initial C-N coupling of *OCO and subsequent protonation over dual-metal hetero-single-atoms in N-Fe-(N-B)-Cu-N coordination mode (FeN/BCuN@NC), which greatly inhibits the formation of C-containing byproducts and facilitates urea electrosynthesis in an unprecedented C-selectivity of 97.1 % with urea yield of 2072.5 μg h mg and 71.9 % Faradaic efficiency, outperforming state-of-the-art electrodes. The carbon-directed antibonding interaction with Cu-B is elaborated to benefit single O-philic adsorption of CO rather than conventional C-end or bridging O,O-end adsorption modes, which can accelerate the kinetics of initiated C-N coupling and protonation. Theoretical results indicate that the O-monodentate adsorption pathway benefits the thermodynamics of the C-N coupling of *OCO with *NO and the protonation rate-determining step, which markedly inhibits CO direct protonation. This oriented strategy of manipulating reactant adsorption patterns to initiate a specific step is universal to moderate oxophilic transition metals and offers a kinetic-enhanced path for multiple conversion processes.
由一氧化碳和一氧化氮进行的热力学和动力学缓慢的电催化碳氮偶联最初是惰性的,通常在一氧化碳质子化后才会发生,这严重降低了尿素效率和碳原子经济性。在此,我们报道了一种单亲氧吸附策略,以促进OCO的初始碳氮偶联以及随后在具有N-Fe-(N-B)-Cu-N配位模式的双金属杂单原子(FeN/BCuN@NC)上的质子化,这极大地抑制了含碳副产物的形成,并以前所未有的97.1%的碳选择性促进了尿素电合成,尿素产率为2072.5 μg h mg ,法拉第效率为71.9%,优于现有电极。阐述了与Cu-B的碳导向反键相互作用有利于一氧化碳的单亲氧吸附,而不是传统的碳端或桥连O、O端吸附模式,这可以加速初始碳氮偶联和质子化的动力学。理论结果表明,单齿氧吸附途径有利于OCO与*NO碳氮偶联的热力学以及质子化速率决定步骤,这显著抑制了一氧化碳的直接质子化。这种操纵反应物吸附模式以启动特定步骤的定向策略对于中等亲氧过渡金属是通用的,并为多种转化过程提供了动力学增强路径。