Ishizuka Ryosuke
Zkanics F.P.S., Side-6 Senriyama-West, Suita, Osaka 565-0851, Japan.
J Phys Chem B. 2024 Sep 5;128(35):8522-8529. doi: 10.1021/acs.jpcb.4c03897. Epub 2024 Aug 24.
We investigate the properties of aqueous solutions using integral equation theories and molecular dynamics (MD) simulations within the framework of the MARTINI coarse-grained force field. The integral equation theory used in the present work is based on the Ornstein-Zernike equation coupled with the hypernetted chain (HNC) and Kovalenko-Hirata (KH) closures. Overall, the solvation shell structures and solvation thermodynamics in the HNC approximation are shown to be in better agreement with those from the MD simulation than the KH results. Especially, through the analysis of spatial distribution functions of water around a protein, we have demonstrated that the HNC approximation can provide the highly anisotropic structure of the solvation shell of the protein. On the other hand, the KH approximation works well for simple particle solutes, but the results for highly hydrated proteins deviate quite significantly from the MD results. We further explore in detail the reason underlying the deviation caused by the KH approximation. Lastly, a potential application of the integral equation theory with the MARTINI model is outlined.
我们在MARTINI粗粒化力场框架内,使用积分方程理论和分子动力学(MD)模拟研究水溶液的性质。本工作中使用的积分方程理论基于与超网链(HNC)和科瓦连科-平田(KH)封闭近似相结合的奥恩斯坦-泽尔尼克方程。总体而言,与KH结果相比,HNC近似中的溶剂化壳层结构和溶剂化热力学与MD模拟结果更吻合。特别是,通过分析蛋白质周围水的空间分布函数,我们证明了HNC近似可以提供蛋白质溶剂化壳层的高度各向异性结构。另一方面,KH近似对于简单粒子溶质效果良好,但对于高度水合的蛋白质,其结果与MD结果有相当大的偏差。我们进一步详细探讨了KH近似导致偏差的根本原因。最后,概述了积分方程理论与MARTINI模型的潜在应用。