Luo Yongrui, Qian Yinnan, Cai Minghui, Zhang Pengtao, Li Jixiao, Luo Zhaoyan, Hu Jiangtao, Li Yongliang, Zhang Qianling, Ren Xiangzhong
College of Chemistry and Environmental Engineering, International Joint Research Center for Molecular Science, Shenzhen University, Shenzhen, Guangdong 518060, PR China.
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, PR China.
J Colloid Interface Sci. 2025 Jan 15;678(Pt A):53-62. doi: 10.1016/j.jcis.2024.08.132. Epub 2024 Aug 20.
Plastic-crystal-embedded elastomer electrolytes (PCEEs), produced through polymerization-induced phase separation (PIPS), are gaining popularity as solid polymer electrolytes (SPEs). However, it remains to be investigated whether all monomer molecules can achieve polymerization-induced phase separation and the corresponding differences in lithium metal battery performance. Herein, we prepared PCEEs with different functional groups (OH, CN, F) through in situ polymerization. Research findings show that PCEE containing - CN or - F achieves the separation of the plastic crystalline phase and succinonitrile (SN) phase, whereas PCEE containing OH cannot due to hydrogen bonding with the SN phase. Notably, the PCEE synthesized with the F monomer (FBA-PCEE) exhibited exceptional interfacial stability with lithium metal anodes and lithium iron phosphate (LFP) cathodes, due to its unique coordination mechanism with lithium ions. The FBA-PCEE demonstrated a high ionic conductivity (2.02 × 10 S cm) and lithium-ion migration number ( [Formula: see text] = 0.75). Moreover, lithium symmetric cells incorporating FBA-PCEE demonstrated stable cycling performance for more than 1000 h at a current density of 0.1 mA cm, resulting in the development of a solid electrolyte interphase (SEI) rich in LiF, LiN, and LiCO over time. Additionally, incorporating FBA-PCEE facilitated the stable cycling of LPF over 1000 cycles at 0.5C, maintaining a capacity retention of 77.38 % after 500 cycles. When coupled with high-voltage Nickel Cobalt Manganese Oxide (NCM-622) cathodes and lithium metal anodes, a discharge capacity of 119.70 mAh g at 0.1C was sustained after 100 cycles, exhibiting a capacity retention of 78.95 %. This study elucidates the critical role of monomer design in achieving PIPS, offering valuable insights into developing high-performance polymer composite electrolytes for advanced lithium metal batteries.
通过聚合诱导相分离(PIPS)制备的塑料晶体嵌入弹性体电解质(PCEEs)作为固体聚合物电解质(SPEs)正变得越来越受欢迎。然而,所有单体分子是否都能实现聚合诱导相分离以及锂金属电池性能的相应差异仍有待研究。在此,我们通过原位聚合制备了具有不同官能团(OH、CN、F)的PCEEs。研究结果表明,含有 - CN或 - F的PCEE实现了塑料晶相和丁二腈(SN)相的分离,而含有OH的PCEE由于与SN相形成氢键而无法实现分离。值得注意的是,用F单体合成的PCEE(FBA - PCEE)与锂金属阳极和磷酸铁锂(LFP)阴极表现出优异的界面稳定性,这归因于其与锂离子独特的配位机制。FBA - PCEE表现出高离子电导率(2.02×10 S cm)和锂离子迁移数([公式:见原文] = 0.75)。此外,包含FBA - PCEE的锂对称电池在0.1 mA cm的电流密度下表现出超过1000小时的稳定循环性能,随着时间的推移形成了富含LiF、LiN和LiCO的固体电解质界面(SEI)。此外,加入FBA - PCEE有助于LPF在0.5C下稳定循环超过1000次,在500次循环后容量保持率为77.38%。当与高压镍钴锰氧化物(NCM - 622)阴极和锂金属阳极耦合时,在100次循环后0.1C下的放电容量维持在119.7 mAh g以上,容量保持率为78.95%。本研究阐明了单体设计在实现PIPS中的关键作用,为开发用于先进锂金属电池的高性能聚合物复合电解质提供了有价值的见解。