Medical Faculty of the University of Basel, Basel, Switzerland.
Medical University Department, Division of General Internal and Emergency Medicine, Kantonsspital Aarau, Aarau, Switzerland.
Clin Nutr. 2024 Sep;43(9):2255-2262. doi: 10.1016/j.clnu.2024.07.020. Epub 2024 Aug 2.
Low muscle mass and malnutrition are independently associated with an increased risk of adverse outcomes in patients with cancer. However, it is not yet clear which parameter is most indicative of these risks. This study investigates the prognostic significance of different parameters reflecting malnutrition and muscle health in a well-characterised oncology population at nutritional risk.
This preplanned secondary analysis included patients with cancer from a Swiss-wide, randomised-controlled nutritional trial. We investigated associations among malnutrition markers (i.e., malnutrition diagnosis based on modified Global Leadership Initiative on Malnutrition (GLIM) criteria, albumin concentration) and muscle health markers (i.e., hand grip strength, computed tomography (CT)-based muscle mass and radiodensity) with 180-day all-cause mortality (primary outcome).
We included 269 patients with a main admission diagnosis of cancer and available CT scans. In a mutually adjusted model, four parameters contributed to risk assessment including modified malnutrition diagnosis (GLIM) (HR 1.78 (95%CI 1.17 to 2.69), p = 0.007, AUC 0.58), low albumin concentration (HR 1.58 (95%CI 1.08 to 2.31), p = 0.019, AUC 0.62), low handgrip strength (HR 2.05 (95%CI 1.43 to 2.93), p = 0.001, AUC 0.62) and low muscle radiodensity (HR 1.39 (95%CI 0.90 to 2.16), p = 0.139, AUC 0.63). Combining these parameters resulted in a model with high prognostic power regarding 180-day mortality (overall AUC 0.71).
In this study of inpatients with cancer at nutritional risk, several malnutrition and muscle health parameters emerged as independent prognostic indicators for mortality. The use of these parameters may improve risk stratification and guide nutritional interventions in this vulnerable population.
ClinicalTrials.gov, number NCT02517476.
低肌肉量和营养不良与癌症患者不良结局的风险增加独立相关。然而,目前尚不清楚哪种参数最能说明这些风险。本研究旨在探讨在营养风险的肿瘤患者人群中,反映营养不良和肌肉健康的不同参数的预后意义。
这是一项对瑞士范围内的随机对照营养试验中的癌症患者进行的预先计划的二次分析。我们研究了营养不良标志物(即基于改良全球领导力倡议下的营养不良(GLIM)标准的营养不良诊断、白蛋白浓度)和肌肉健康标志物(即手握力、基于 CT 的肌肉量和 CT 密度)与 180 天全因死亡率(主要结局)之间的关联。
我们纳入了 269 名主要诊断为癌症且有 CT 扫描的患者。在相互调整的模型中,有四个参数有助于风险评估,包括改良营养不良诊断(GLIM)(HR 1.78(95%CI 1.17 至 2.69),p=0.007,AUC 0.58)、低白蛋白浓度(HR 1.58(95%CI 1.08 至 2.31),p=0.019,AUC 0.62)、低手握力(HR 2.05(95%CI 1.43 至 2.93),p=0.001,AUC 0.62)和低肌肉 CT 密度(HR 1.39(95%CI 0.90 至 2.16),p=0.139,AUC 0.63)。将这些参数结合起来,可以建立一个具有高预后能力的模型,用于预测 180 天死亡率(总体 AUC 0.71)。
在这项对营养风险住院癌症患者的研究中,几种营养不良和肌肉健康参数成为死亡率的独立预后指标。这些参数的使用可能有助于对这一脆弱人群进行风险分层和指导营养干预。
ClinicalTrials.gov,编号 NCT02517476。