Heitland Jonas, Lee Jong Chan, Ban Loren, Abma Grite L, Fortune William G, Fielding Helen H, Yoder Bruce L, Signorell Ruth
Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.
Department of Chemistry, University College London, WC1H 0AJ London, U.K.
J Phys Chem A. 2024 Sep 5;128(35):7396-7406. doi: 10.1021/acs.jpca.4c04269. Epub 2024 Aug 25.
Biochemistry and a large part of atmospheric chemistry occur in aqueous environments or at aqueous interfaces, where (photo)chemical reaction rates can be increased by up to several orders of magnitude. The key to understanding the chemistry and photoresponse of molecules in and "on" water lies in their valence electronic structure, with a sensitive probe being photoelectron spectroscopy. This work reports velocity-map photoelectron imaging of submicrometer-sized aqueous phenol droplets in the valence region after nonresonant (288 nm) and resonance-enhanced (274 nm) two-photon ionization with femtosecond ultraviolet light, complementing previous liquid microjet studies. For nonresonant photoionization, our concentration-dependent study reveals a systematic decrease in the vertical binding energy (VBE) of aqueous phenol from 8.0 ± 0.1 eV at low concentration (0.01 M) to 7.6 ± 0.1 eV at high concentration (0.8 M). We attribute this shift to a systematic lowering of the energy of the lowest cationic state with increasing concentration caused by the phenol dimer and aggregate formation at the droplet surface. Contrary to nonresonant photoionization, no significant concentration dependence of the VBE was observed for resonance-enhanced photoionization. We explain the concentration-independent VBE of ∼8.1 eV observed upon resonant ionization by ultrafast intermediate state relaxation and changes in the accessible Franck-Condon region as a consequence of the lowering of the intermediate state potential energy due to the formation of phenol excimers and excited phenol aggregates. Correcting for the influence of electron transport scattering in the droplets reduced the measured VBEs by 0.1-0.2 eV.
生物化学以及大气化学的很大一部分过程都发生在水环境或水界面处,在这些地方,(光)化学反应速率可提高多达几个数量级。理解水中和水“表面”分子的化学性质及光响应的关键在于它们的价电子结构,光电子能谱是一种灵敏的探测手段。这项工作报道了用飞秒紫外光进行非共振(288纳米)和共振增强(274纳米)双光子电离后,亚微米级水相苯酚液滴在价电子区域的速度映射光电子成像,对之前的液体微射流研究起到了补充作用。对于非共振光电离,我们基于浓度的研究揭示了水相苯酚的垂直结合能(VBE)随浓度变化呈现系统性降低,从低浓度(0.01 M)时的8.0±0.1电子伏特降至高浓度(0.8 M)时的7.6±0.1电子伏特。我们将这种变化归因于随着液滴表面苯酚二聚体和聚集体的形成,最低阳离子态的能量随浓度增加而系统性降低。与非共振光电离相反,共振增强光电离未观察到VBE对浓度有显著依赖性。我们解释了共振电离时观察到的约8.1电子伏特的与浓度无关的VBE,这是由于超快中间态弛豫以及由于苯酚准分子和激发态苯酚聚集体的形成导致中间态势能降低,从而使可及的弗兰克 - 康登区域发生变化所致。校正液滴中电子输运散射的影响后,测得的VBE降低了0.1 - 0.2电子伏特。