School of Environment, Nanjing Normal University, 1, Wenyuan Road, Xianlin University District, Nanjing, 210023, China; Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8550, Japan.
Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan.
Water Res. 2024 Nov 1;265:122319. doi: 10.1016/j.watres.2024.122319. Epub 2024 Aug 22.
Cyanobacteria-derived organic carbon has been reported to intensify greenhouse gas emissions from lacustrine sediments. However, the specific processes of CH and CO production and release from sediments into the atmosphere remain unclear, especially in eutrophic lakes. To investigate the influence of severe cyanobacteria accumulation on the production and migration of sedimentary CH and CO, this study examined the different trophic level lakes along the middle and lower reaches of the Yangtze River. The results demonstrated that eutrophication amplified CH and CO emissions, notably in Lake Taihu, where fluxes peaked at 929.9 and 7222.5 μmol/m·h, mirroring dissolved gas levels in overlying waters. Increased sedimentary organic carbon raised dissolved CH and CO concentrations in pore-water, with isotopic tracking showing cyanobacteria-derived carbon specifically elevated CH and CO in surface sediment pore-water more than in deeper layers. Cyanobacteria-derived carbon deposition on surface sediment boosted organic carbon and moisture levels, fostering an anaerobic microenvironment conducive to enhanced biogenic CH and CO production in surface sediments. In the microcosm systems with the most severe cyanobacteria accumulation, average CH and CO concentrations in surface sediments reached 6.9 and 2.3 mol/L, respectively, surpassing the 4.7 and 1.4 mol/L observed in bottom sediments, indicating upward migration of CH and CO hotspots from deeper to surface layers. These findings enhance our understanding of the mechanisms underlying lake sediment carbon emissions induced by eutrophication and provide a more accurate assessment of lake carbon emissions.
蓝藻衍生的有机碳已被报道会加剧湖泊沉积物的温室气体排放。然而,从沉积物向大气中产生和释放 CH 和 CO 的具体过程仍不清楚,特别是在富营养化湖泊中。为了研究严重蓝藻聚集对沉积物 CH 和 CO 产生和迁移的影响,本研究考察了沿长江中下游不同营养水平的湖泊。结果表明,富营养化放大了 CH 和 CO 的排放,在太湖尤为明显,通量峰值分别达到 929.9 和 7222.5 μmol/m·h,与上覆水中的溶解气体水平相吻合。增加的沉积物有机碳提高了孔隙水中的溶解 CH 和 CO 浓度,同位素示踪表明,蓝藻衍生的碳特别增加了表层沉积物孔隙水中的 CH 和 CO,而不是更深层的 CH 和 CO。蓝藻衍生碳在表层沉积物上的沉积增加了有机碳和水分含量,促进了有利于表层沉积物中生物成因 CH 和 CO 产生的厌氧微环境。在蓝藻积累最严重的微宇宙系统中,表层沉积物中 CH 和 CO 的平均浓度分别达到 6.9 和 2.3 mol/L,超过了底层沉积物中观察到的 4.7 和 1.4 mol/L,表明 CH 和 CO 热点从深层向上层迁移。这些发现增强了我们对富营养化引起的湖泊沉积物碳排放机制的理解,并提供了对湖泊碳排放更准确的评估。