Suppr超能文献

利用机器学习评估世界上最大的红树林中的重金属污染。

Utilizing machine learning to evaluate heavy metal pollution in the world's largest mangrove forest.

机构信息

State Key Laboratory of Mountain Hazards and Engineering Safety, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China; University of Chinese Academy of Sciences, Beijing 100049, China.

State Key Laboratory of Mountain Hazards and Engineering Safety, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Disaster Resilience and Engineering, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh.

出版信息

Sci Total Environ. 2024 Nov 15;951:175746. doi: 10.1016/j.scitotenv.2024.175746. Epub 2024 Aug 23.

Abstract

The world's largest mangrove forest (Sundarbans) is facing an imminent threat from heavy metal pollution, posing grave ecological and human health risks. Developing an accurate predictive model for heavy metal content in this area has been challenging. In this study, we used machine learning techniques to model sediment pollution by heavy metals in this vital ecosystem. We collected 199 standardized sediment samples to predict the accumulation of eleven heavy metals using ten different machine learning algorithms. Among them, the extremely randomized tree model exhibited the best performance in predicting Fe (0.87), Cr (0.89), Zn (0.85), Ni (0.83), Cu (0.87), Co (0.62), As (0.68), and V (0.90), achieving notable R values. On the other hand, the random forest outperformed for predicting Cd (0.72) and Mn (0.91), whereas the decision tree model showed the best performance for Pb (0.73). The feature attribute analysis identified FeV, CrV, CuZn, CoMn, PbCd, and AsCd relationships resembled with correlation coefficients among them. Based on the established models, the prediction of the contamination factor of metals in sediments showed very high Cd contamination (CF ≥ 6). The Moran's I index for Cd, Cr, Pb, and As were 0.71, 0.81, 0.71, and 0.67, respectively, indicating strong positive spatial autocorrelation and suggesting clustering of similar contamination levels. Conclusively, this research provides a comprehensive framework for predicting heavy metal sediment pollution in the Sundarbans, identifying key areas needing urgent conservation. Our findings support the adoption of integrated management strategies and targeted remedial actions to mitigate the harmful effects of heavy metal contamination in this vital ecosystem.

摘要

世界上最大的红树林(孙德尔本斯)正面临重金属污染的迫在眉睫的威胁,这对生态和人类健康构成了严重威胁。在这个关键的生态系统中,开发一个准确预测重金属含量的模型一直具有挑战性。在这项研究中,我们使用机器学习技术来模拟该重要生态系统中重金属的沉积物污染。我们收集了 199 个标准化的沉积物样本,使用十种不同的机器学习算法来预测 11 种重金属的积累。其中,极端随机树模型在预测 Fe(0.87)、Cr(0.89)、Zn(0.85)、Ni(0.83)、Cu(0.87)、Co(0.62)、As(0.68)和 V(0.90)方面表现出最佳性能,达到了显著的 R 值。另一方面,随机森林在预测 Cd(0.72)和 Mn(0.91)方面表现出色,而决策树模型在预测 Pb(0.73)方面表现最佳。特征属性分析确定了 FeV、CrV、CuZn、CoMn、PbCd 和 AsCd 之间的关系,它们之间的相关系数相似。基于建立的模型,对沉积物中金属污染因子的预测表明 Cd 污染非常严重(CF≥6)。Cd、Cr、Pb 和 As 的 Moran's I 指数分别为 0.71、0.81、0.71 和 0.67,表明存在强烈的正空间自相关,表明存在类似污染水平的聚类。总之,这项研究为孙德尔本斯地区预测重金属沉积物污染提供了一个全面的框架,确定了需要紧急保护的关键区域。我们的研究结果支持采取综合管理策略和有针对性的补救措施,以减轻重金属污染对这一重要生态系统的有害影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验