Nursamsi Ilyas, Phinn Stuart R, Levin Noam, Luskin Matthew Scott, Sonter Laura Jane
School of the Environment, The University of Queensland, St Lucia, Brisbane, QLD, Australia.
School of the Environment, The University of Queensland, St Lucia, Brisbane, QLD, Australia; Remote Sensing Research Centre, The University of Queensland, St Lucia, Brisbane, QLD, Australia.
Sci Total Environ. 2024 Nov 15;951:175761. doi: 10.1016/j.scitotenv.2024.175761. Epub 2024 Aug 23.
Artisanal and small-scale mining (ASM) significantly influences the socio-economic development of many low-to-middle-income countries, albeit sometimes at the expense of environmental and human health. Characterized by its labor-intensive extraction from confined (<5 ha) or peripheral mineral reserves, congregated ASM practices can rival the spatial footprint of industrial mines. The unregulated and informal nature of many ASM activities presents monitoring challenges that remote sensing (RS) methods aim to address. While local-scale ASM mapping has seen success, scaling these methods to regional or global levels remains unclear. We review literature on mapping ASM to determine: (1) if studies represent the global distribution and diversity of ASM activities, (2) how ASM's unique characteristics influence the choice of RS methods, and (3) which RS approaches are the most accurate and cost-effective. We found current studies disproportionately focused on ASM regions in Africa, which highlights the need to extend the research to other regions with unique ASM characteristics, such as coal and sand mining in India and China. The selection of RS approaches is heavily influenced by local ASM contexts, the scale of analysis, and resource constraints such as funding for high-resolution imagery and validation data availability. We argue that accurate regional-scale ASM mapping (>100,000 km2) requires innovative combinations of data and methods to overcome data management and storage challenges. Local community participation, including miners, is vital for on-ground mapping and monitoring capacity. We outline a research agenda needed to develop a range of approaches for mapping and monitoring ASM in under-studied regions. By synthesizing effective methods, we provide a foundation for generating accurate and comprehensive spatial data, addressing the issues of inaccurate and incomplete data that global ASM platforms aim to resolve. This spatial data can guide policymakers, NGOs, and businesses in making informed decisions and targeted interventions to improve ASM sector safety, sustainability, and efficiency. Leveraging cloud-based geoprocessing platforms, with regularly updated global satellite image archives, combined with crowd-sourced on-ground information offers a potential solution for sustained regional-scale monitoring.
个体和小规模采矿(ASM)对许多中低收入国家的社会经济发展具有重大影响,尽管有时是以牺牲环境和人类健康为代价。ASM的特点是从有限(<5公顷)或周边矿产储备中进行劳动密集型开采,聚集式的ASM作业在空间占用上可与工业矿山相媲美。许多ASM活动的无监管和非正式性质带来了监测挑战,而遥感(RS)方法旨在应对这些挑战。虽然局部尺度的ASM测绘已取得成功,但将这些方法扩展到区域或全球层面仍不明确。我们回顾了关于ASM测绘的文献,以确定:(1)研究是否代表了ASM活动的全球分布和多样性;(2)ASM的独特特征如何影响RS方法的选择;(3)哪些RS方法最准确且具有成本效益。我们发现当前的研究过多地集中在非洲的ASM地区,这凸显了将研究扩展到其他具有独特ASM特征的地区的必要性,例如印度和中国的煤炭和砂石开采。RS方法的选择在很大程度上受到当地ASM情况、分析尺度以及资源限制(如高分辨率图像资金和验证数据可用性)的影响。我们认为,准确的区域尺度ASM测绘(>100,000平方公里)需要创新的数据和方法组合,以克服数据管理和存储挑战。包括矿工在内的当地社区参与对于实地测绘和监测能力至关重要。我们概述了在研究不足的地区开发一系列ASM测绘和监测方法所需的研究议程。通过综合有效方法,我们为生成准确和全面的空间数据奠定了基础,解决了全球ASM平台旨在解决的数据不准确和不完整问题。这种空间数据可以指导政策制定者、非政府组织和企业做出明智决策和有针对性的干预,以提高ASM部门的安全性、可持续性和效率。利用基于云的地理处理平台,结合定期更新的全球卫星图像档案以及众包实地信息,为持续的区域尺度监测提供了一个潜在解决方案。