DMPK & Bioanalysis Unit, Sunplanet Co., Ltd, Tokodai 5-1-3, Tsukuba, Ibaraki 300-2635, Japan; Laboratory of Genomics-based Drug Discovery, Faculty of Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8575, Japan.
Laboratory of Genomics-based Drug Discovery, Faculty of Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8575, Japan; Global Drug Metabolism and Pharmacokinetics, Eisai Co., Ltd, Tokodai 5-1-3, Tsukuba, Ibaraki 300-2635, Japan.
Anal Chim Acta. 2024 Sep 15;1322:343056. doi: 10.1016/j.aca.2024.343056. Epub 2024 Aug 3.
Coproporphyrin I (CP-I), Coproporphyrin III (CP-III), and glycochenodeoxycholate-3-sulfate (GCDCA-S) act as endogenous substrates of Organic Anion Transporting Polypeptide (OATP) 1B and have been considered for application in OATP1B-mediated drug‒drug interaction (DDI) risk assessments. Prior assays of the endogenous OATP substrates might exhibit reduced DDI detection capability and possibly overlook low DDI risk. We pioneered a simultaneous assay of the three substrates in monkey plasma using ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS) and applied it to monkey studies to identify lower DDI risk.
The methodology development indicated that precursors of CP-I/III were oxidized to form CP-I/III, diminishing the detection capability in DDI risk assessments. A precursor eliminated analytical (PEA) method was developed to eliminate the precursors through solid-phase extraction. This method aimed to prevent the oxidation of CP-I/III precursors by incorporating edaravone. For comparison, a precursor oxidized analytical (POA) method was also developed, wherein the precursors of CP-I/III were fully oxidized to CP-I/III. The PEA method achieved high sensitivity for CP-I/III and GCDCA-S, with lower quantification limits of 0.01 ng mL and 0.5 ng mL, respectively. Both methods ensured that the validation parameters met the acceptance criteria. The two methods were applied to a monkey study, with CP-I/III showcasing notably enhanced DDI detection capabilities through the novel PEA method in comparison to the POA method.
This study's methodology has future implications for OATP-mediated DDI risk assessment using endogenous substrates. The novel PEA method can identify lower OATP-mediated DDI risks for drugs that the current methods cannot detect. Our method is likely applicable in clinical settings, and its utility should be assessed in clinical trials.
粪卟啉原 I(CP-I)、粪卟啉原 III(CP-III)和甘氨胆酸-3-硫酸酯(GCDCA-S)可作为有机阴离子转运多肽(OATP)1B 的内源性底物,并已被用于评估 OATP1B 介导的药物相互作用(DDI)风险。先前的内源性 OATP 底物测定法可能会降低 DDI 检测能力,并且可能会忽略低 DDI 风险。我们首创了一种使用超高效液相色谱-串联质谱法(UPLC-MS/MS)同时测定猴血浆中这三种底物的方法,并将其应用于猴研究,以确定较低的 DDI 风险。
方法学开发表明 CP-I/III 的前体被氧化形成 CP-I/III,从而降低了 DDI 风险评估中的检测能力。开发了一种前体消除分析(PEA)方法,通过固相萃取消除 CP-I/III 的前体。该方法旨在通过加入依达拉奉来防止 CP-I/III 前体的氧化。作为比较,还开发了一种前体氧化分析(POA)方法,其中 CP-I/III 的前体完全氧化形成 CP-I/III。PEA 方法对 CP-I/III 和 GCDCA-S 具有高灵敏度,定量下限分别为 0.01ng/mL 和 0.5ng/mL。两种方法均确保验证参数符合验收标准。这两种方法都应用于猴研究,与 POA 方法相比,新型 PEA 方法显著提高了 CP-I/III 的 DDI 检测能力。
本研究的方法学为使用内源性底物进行 OATP 介导的 DDI 风险评估提供了未来的意义。新型 PEA 方法可以识别当前方法无法检测到的药物的较低 OATP 介导的 DDI 风险。我们的方法可能适用于临床环境,应在临床试验中评估其效用。