Suzuki Nozomu, Taura Daisuke, Furuta Yusuke, Ono Yudai, Miyagi Senri, Kameda Ryota, Haino Takeharu
Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokko, Nada, Kobe, 657-8501, Japan.
Department of Human Studies, Faculty of Arts and Humanities, Shikoku Gakuin University, 3-2-1 Bunkyo-cho, Zentsuji, Kagawa, 765-8505, Japan.
Angew Chem Int Ed Engl. 2025 Jan 2;64(1):e202413340. doi: 10.1002/anie.202413340. Epub 2024 Nov 27.
An efficient strategy for high-performance chiral materials is to design and synthesize host molecules with left- and right- (M- and P-)twisted conformations and to control their twisted conformations. For this, a quantitative analysis is required to describe the chiroptical inversion, chiral transfer, and chiral recognition in the host-guest systems, which is generally performed using circular dichroism (CD) and/or proton nuclear magnetic resonance (H NMR) spectroscopies. However, the mass-balance model that considers the M- and P-twisted conformations has not yet been established. In this study, we derived the novel equations based on the mass-balance model for the 1 : 1 host-guest systems. Then, we further applied them to analyze the 1 : 1 host-guest systems for the achiral calixarene-based capsule molecule, achiral dimeric zinc porphyrin tweezer molecule, and chiral pillar[5]arene with the chiral and/or achiral guest molecules by using the data obtained from the CD titration, variable temperature CD (VT-CD), and H NMR experiments. The thermodynamic parameters (ΔH and ΔS), equilibrium constants (K), and molar CD (Δϵ) in the 1 : 1 host-guest systems could be successfully determined by the theoretical analyses using the derived equations.
一种用于高性能手性材料的有效策略是设计并合成具有左旋和右旋(M型和P型)扭曲构象的主体分子,并控制它们的扭曲构象。为此,需要进行定量分析来描述主客体系统中的圆二色性反转、手性转移和手性识别,这通常使用圆二色光谱(CD)和/或质子核磁共振(H NMR)光谱来进行。然而,考虑M型和P型扭曲构象的质量平衡模型尚未建立。在本研究中,我们基于1 : 1主客体系统的质量平衡模型推导了新的方程。然后,我们通过使用从CD滴定、变温CD(VT-CD)和H NMR实验获得的数据,进一步应用这些方程来分析基于杯芳烃的非手性胶囊分子、非手性二聚体锌卟啉镊子分子以及具有手性和/或非手性客体分子的手性柱[5]芳烃的1 : 1主客体系统。通过使用推导的方程进行理论分析,可以成功确定1 : 1主客体系统中的热力学参数(ΔH和ΔS)、平衡常数(K)和摩尔CD(Δϵ)。