Calegari Andrade Marcos F, Li Sichi, Pham Tuan Anh, Akhade Sneha A, Pang Simon H
Materials Science Division, Lawrence Livermore National Laboratory Livermore California 94550 USA
Chem Sci. 2024 Jul 9;15(33):13173-13180. doi: 10.1039/d4sc00105b. eCollection 2024 Aug 22.
Direct air capture of CO using supported amines provides a promising means to achieve the net-zero greenhouse gas emissions goal; however, many mechanistic details regarding the CO adsorption process in condensed phase amines remain poorly understood. This work combines machine learning potentials, enhanced sampling and grand-canonical Monte Carlo simulations to directly compute experimentally relevant quantities to elucidate the mechanism of CO chemisorption in liquid ammonia as a model system. Our simulations suggest that CO capture in the liquid occurs in a sequential fashion, with the formation of a metastable zwitterion intermediate. Furthermore, we identified the importance of solvent-mediated proton transfer and solvent dynamics, not only in the reaction pathway but also in the efficiency of CO chemisorption. Beyond liquid ammonia, the methodology presented here can be readily extended to simulate amines with more complex chemical structures under experimental conditions, paving the way to elucidate the structure-performance of amines for CO capture.
使用负载型胺直接空气捕获二氧化碳为实现温室气体净零排放目标提供了一种有前景的方法;然而,关于凝聚相胺中二氧化碳吸附过程的许多机理细节仍知之甚少。这项工作结合了机器学习势、增强采样和巨正则蒙特卡罗模拟,直接计算与实验相关的量,以阐明作为模型体系的液氨中一氧化碳化学吸附的机理。我们的模拟表明,液体中一氧化碳的捕获以连续方式发生,形成亚稳两性离子中间体。此外,我们确定了溶剂介导的质子转移和溶剂动力学的重要性,这不仅在反应途径中,而且在一氧化碳化学吸附效率中都很重要。除了液氨之外,这里提出的方法可以很容易地扩展到在实验条件下模拟具有更复杂化学结构的胺,为阐明用于捕获一氧化碳的胺的结构性能铺平道路。