Riaz Junaid, Cao Jianchun, Zhang Yongguo, Bibi Amina, Zhou Xiaolong
Faculty of Material Science and Engineering, Kunming University of Science and Technology Kunming 650093 China
Department of Physics, Hazara University Mansehra 21300 Pakistan.
Nanoscale Adv. 2024 Aug 10;6(20):5145-57. doi: 10.1039/d4na00372a.
In today's energy landscape, the rise of energy crises spurred by rapid industrial expansion demands the development of advanced energy storage systems, especially those leveraging renewable sources independently. Pseudocapacitors, renowned for their high specific capacitance ( ), offer a promising solution. Among them, transition metal nitride-based oxides stand out because of their remarkable conductivity and storage capacity, making them ideal candidates for supercapacitor (SC) cathode materials. In a recent study, we employed a wet-chemical method to synthesize a TiN-ZnO composite, showing potential as an electrode material for supercapacitor systems. The resulting composite exhibited promising crystallinity, indicating its suitability for electrode applications. Impressively, the TiN-ZnO electrode demonstrated a specific capacitance ( ) of 469 F g during electrochemical testing. Additionally, it showcased a high energy density ( ) of 19.83 W h kg and a power density ( ) of 6298.2 W kg. Moreover, it displayed exceptional cycling stability, retaining 95% of its performance over 7500 cycles. With superior electrochemical properties compared to pure materials, the fabricated TiN-ZnO electrode holds significant promise for supercapacitors and other energy-related technologies. This advancement presents a compelling solution to the urgent need for efficient and sustainable energy storage in the modern era.
在当今的能源格局中,快速的工业扩张引发了能源危机,这就需要开发先进的储能系统,尤其是那些能够独立利用可再生能源的系统。赝电容器以其高比电容( )而闻名,提供了一个有前景的解决方案。其中,基于过渡金属氮化物的氧化物因其卓越的导电性和存储容量而脱颖而出,使其成为超级电容器(SC)阴极材料的理想候选者。在最近的一项研究中,我们采用湿化学方法合成了TiN-ZnO复合材料,显示出作为超级电容器系统电极材料的潜力。所得复合材料表现出良好的结晶度,表明其适用于电极应用。令人印象深刻的是,TiN-ZnO电极在电化学测试期间表现出469 F g的比电容( )。此外,它还展示了19.83 W h kg的高能量密度( )和6298.2 W kg的功率密度( )。而且,它表现出卓越的循环稳定性,在7500次循环中保持其性能的95%。与纯材料相比,制备的TiN-ZnO电极具有优异的电化学性能,对超级电容器和其他能源相关技术具有重大前景。这一进展为现代高效可持续储能的迫切需求提供了一个引人注目的解决方案。