Faculty of Chemistry, Shahid Beheshti University, G. C., 1983963113, Evin, Tehran, Iran.
Faculty of Chemistry, Shahid Beheshti University, G. C., 1983963113, Evin, Tehran, Iran.
J Colloid Interface Sci. 2019 Feb 1;535:195-204. doi: 10.1016/j.jcis.2018.09.100. Epub 2018 Sep 29.
Pseudocapacitive electrode materials employed in supercapacitors may bring in high energy density (ED) and specific capacitance (C), which are critical for their practical applications. Accordingly, logical design of advanced electrode materials is highly demanded to progress high-performance supercapacitors. Here, for the first time, we suggest a straightforward route for the synthesis of NiGaS-rGO as an advanced cathode material supported on nickel foam (NF) for employed in flexible solid-state asymmetric supercapacitors (FSASCs). Due to an abundant ratio of active sites and large surface area of the NiGaS-rGO advanced material, the as-prepared NiGaS-rGO/NF electrode illustrates considerable electrochemical properties including remarkable specific capacitance (C) of 2124.34 F g with excellent rate capability of 73%, and exceptional durability, which are better than NiGaS/NF and previously reported transition metal sulfides (TMSs). Furthermore, for the first time a pseudocapacitive advanced anode material of FeSe-rGO have been successfully fabricated on a nickel foam (NF) substrate by a facile strategy. Element Selenium as the favorable element was offered into the Fe for enhancement and adjustment of the anode material electrochemical performance. The FeSe-rGO/NF advanced anode electrode presents satisfactory electrochemical properties containing an exceptional specific capacitance (C) of 432.40 F g, significant rate performance of 57.84% and superior durability, which are better than FeSe/NF electrode and previously studied Fe-based anode material. Considering the remarkable electrochemical performance of the as-prepared pseudocapacitive advanced electrode materials, a FSASC based on the NiGaS-rGO/NF as the cathode electrode and FeSe-rGO/NF as the anode electrode was assembled. The FSASC device delivers superior C of 341.20 F g, outstanding energy density (ED) of 121.31 W h kg, remarkable cycle stability (only 7.30% damage after 5000 charge/discharge (CD) cycles).
超级电容器中使用的赝电容电极材料可以带来高能量密度 (ED) 和比电容 (C),这对于它们的实际应用至关重要。因此,非常需要对先进的电极材料进行逻辑设计,以推进高性能超级电容器的发展。在这里,我们首次提出了一种简单的路线,用于合成 NiGaS-rGO 作为先进的阴极材料,负载在镍泡沫 (NF) 上,用于柔性固态非对称超级电容器 (FSASCs)。由于 NiGaS-rGO 先进材料具有丰富的活性位点和较大的表面积,所制备的 NiGaS-rGO/NF 电极表现出相当的电化学性能,包括出色的比电容 (C) 为 2124.34 F g,具有出色的倍率性能 73%,以及出色的耐久性,优于 NiGaS/NF 和之前报道的过渡金属硫化物 (TMSs)。此外,我们首次通过一种简便的策略成功地在镍泡沫 (NF) 基底上制备了赝电容先进阳极材料 FeSe-rGO。元素硒作为有利元素被引入到 Fe 中,以增强和调整阳极材料的电化学性能。FeSe-rGO/NF 先进阳极电极表现出令人满意的电化学性能,包括出色的比电容 (C) 为 432.40 F g,显著的倍率性能 57.84%和出色的耐久性,优于 FeSe/NF 电极和之前研究的 Fe 基阳极材料。考虑到所制备的赝电容先进电极材料的出色电化学性能,基于 NiGaS-rGO/NF 作为阴极电极和 FeSe-rGO/NF 作为阳极电极组装了一个 FSASC。该 FSASC 器件提供了出色的比电容 (C) 为 341.20 F g,高能量密度 (ED) 为 121.31 W h kg,卓越的循环稳定性(在 5000 次充放电 (CD) 循环后仅损坏 7.30%)。