Dreckmann Teresa M, Fritz Lisa, Kaiser Christian F, Bouhired Sarah M, Wirtz Daniel A, Rausch Marvin, Müller Anna, Schneider Tanja, König Gabriele M, Crüsemann Max
Institute of Pharmaceutical Biology, University of Bonn Nussallee 6 53115 Bonn Germany
Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn Meckenheimer Allee 168 53115 Bonn Germany.
RSC Chem Biol. 2024 Aug 16;5(10):970-80. doi: 10.1039/d4cb00157e.
Corallorazines are cyclic lipodipeptide natural products produced by the myxobacterium B035. To decipher the basis of corallorazine biosynthesis, the corallorazine nonribosomal peptide synthetase (NRPS) biosynthetic gene cluster was identified and analyzed in detail. Here, we present a model of corallorazine biosynthesis, supported by bioinformatic analyses and investigations on the bimodular NRPS synthesizing the corallorazine core. Corallorazine biosynthesis shows several distinct features, such as the presence of a dehydrating condensation domain, and a unique split adenylation domain on two open reading frames. Using an alternative fatty acyl starter unit, the first steps of corallorazine biosynthesis were characterized , supporting our biosynthetic model. The dehydrating condensation domain was bioinformatically analyzed in detail and compared to other modifying C domains, revealing unreported specific sequence motives for this domain subfamily. Using global bioinformatics analyses, we show that the gene cluster family is widespread among bacteria and encodes notable chemical diversity. Corallorazine A displays moderate antimicrobial activity against selected Gram-positive and Gram-negative bacteria. Mode of action studies comprising whole cell analysis and test systems revealed that corallorazine A inhibits bacterial transcription by targeting the DNA-dependent RNA polymerase.
珊瑚嗪是由粘细菌B035产生的环状脂二肽天然产物。为了解析珊瑚嗪生物合成的基础,对珊瑚嗪非核糖体肽合成酶(NRPS)生物合成基因簇进行了详细鉴定和分析。在此,我们提出了一个珊瑚嗪生物合成模型,该模型得到了生物信息学分析以及对合成珊瑚嗪核心的双模块NRPS的研究的支持。珊瑚嗪生物合成具有几个独特的特征,例如存在脱水缩合结构域以及在两个开放阅读框上有一个独特的分裂腺苷化结构域。使用替代的脂肪酰起始单元,对珊瑚嗪生物合成的第一步进行了表征,支持了我们的生物合成模型。对脱水缩合结构域进行了详细的生物信息学分析,并与其他修饰C结构域进行了比较,揭示了该结构域亚家族未报道的特定序列基序。通过全面的生物信息学分析,我们表明该基因簇家族在细菌中广泛存在,并编码显著的化学多样性。珊瑚嗪A对选定的革兰氏阳性和革兰氏阴性细菌具有中等抗菌活性。包括全细胞分析和测试系统在内的作用方式研究表明,珊瑚嗪A通过靶向依赖DNA的RNA聚合酶来抑制细菌转录。