Schoppet Melanie, Peschke Madeleine, Kirchberg Anja, Wiebach Vincent, Süssmuth Roderich D, Stegmann Evi, Cryle Max J
The Monash Biomedicine Discovery Institute , Department of Biochemistry and Molecular Biology , EMBL Australia , Monash University , Clayton , Victoria 3800 , Australia . Email:
Department of Biomolecular Mechanisms , Max Planck Institute for Medical Research , Jahnstrasse 29, 69120 Heidelberg , Germany.
Chem Sci. 2018 Oct 10;10(1):118-133. doi: 10.1039/c8sc03530j. eCollection 2019 Jan 7.
Non-ribosomal peptide synthesis is a highly important biosynthetic pathway for the formation of many secondary metabolites of medical relevance. Due to the challenges associated with the chemical synthesis of many of the products of these assembly lines, understanding the activity and selectivity of non-ribosomal peptide synthetase (NRPS) machineries is an essential step towards the redesign of such machineries to produce new bioactive peptides. Whilst the selectivity of the adenylation domains responsible for amino acid activation during NRPS synthesis has been widely studied, the selectivity of the essential peptide bond forming domains - known as condensation domains - is not well understood. Here, we present the results of a combination of and investigations into the final condensation domain from the NRPS machinery that produces the glycopeptide antibiotics (GPAs). Our results show that this condensation domain is tolerant for a range of peptide substrates and even those with unnatural stereochemistry of the peptide C-terminus, which is in contrast to the widely ascribed role of these domains as a stereochemical gatekeeper during NRPS synthesis. Furthermore, we show that this condensation domain has a significant preference for linear peptide substrates over crosslinked peptides, which indicates that the GPA crosslinking cascade targets the heptapeptide bound to the final module of the NRPS machinery and reinforces the role of the unique GPA X-domain in this process. Finally, we demonstrate that the peptide bond forming activity of this condensation domain is coupled to the rate of amino acid activation performed by the subsequent adenylation domain. This is a significant result with implications for NRPS redesign, as it indicates that the rate of amino acid activation of modified adenylation domains must be maintained to prevent unwanted peptide hydrolysis from the NRPS due to a loss of the productive coupling of amino acid selection and peptide bond formation. Taken together, our results indicate that assessing condensation domain activity is a vital step in not only understanding the biosynthetic logic and timing of NRPS-mediated peptide assembly, but also the rules which redesign efforts must obey in order to successfully produce functional, modified NRPS assembly lines.
非核糖体肽合成是形成许多具有医学相关性的次级代谢产物的一条非常重要的生物合成途径。由于这些装配线的许多产物的化学合成存在挑战,了解非核糖体肽合成酶(NRPS)机制的活性和选择性是重新设计此类机制以产生新的生物活性肽的关键一步。虽然在NRPS合成过程中负责氨基酸活化的腺苷化结构域的选择性已得到广泛研究,但对负责形成肽键的关键结构域(即缩合结构域)的选择性却了解甚少。在此,我们展示了结合[此处原文缺失具体研究方法]和[此处原文缺失具体研究方法]对产生糖肽抗生素(GPA)的NRPS机制的最终缩合结构域进行研究的结果。我们的结果表明,该缩合结构域对一系列肽底物甚至那些肽C端具有非天然立体化学的底物具有耐受性,这与这些结构域在NRPS合成过程中作为立体化学守门人的广泛认知作用形成对比。此外,我们表明该缩合结构域对线性肽底物的偏好明显高于交联肽,这表明GPA交联级联反应靶向与NRPS机制最终模块结合的七肽,并强化了独特的GPA X结构域在此过程中的作用。最后,我们证明该缩合结构域的肽键形成活性与后续腺苷化结构域进行的氨基酸活化速率相关联。这是一个对NRPS重新设计具有重要意义的结果,因为它表明必须维持修饰后的腺苷化结构域的氨基酸活化速率,以防止由于氨基酸选择和肽键形成的有效偶联丧失而导致NRPS产生不必要的肽水解。综上所述,我们的结果表明,评估缩合结构域活性不仅是理解NRPS介导的肽组装的生物合成逻辑和时机的关键步骤,也是重新设计工作为成功产生功能性、修饰后的NRPS装配线必须遵循的规则的关键步骤。