Suppr超能文献

使用无监督学习对A组链球菌性咽炎儿童进行分层

Stratification of Group A Streptococcal Pharyngitis Children Using Unsupervised Learning.

作者信息

Miyagi Yoshifumi

机构信息

Department of Pediatrics, Haibara General Hospital, Shizuoka, JPN.

出版信息

Cureus. 2024 Jul 26;16(7):e65461. doi: 10.7759/cureus.65461. eCollection 2024 Jul.

Abstract

Background and objectives Group A Streptococcus (GAS) is the most frequent cause of bacterial pharyngitis, and it is advised to selectively use rapid antigen detection testing (RADT). Currently, the decision to perform this test is based on pediatricians' observations, but the criteria are not well-defined. Therefore, we utilized unsupervised learning to categorize patients based on the clinical manifestations of GAS pharyngitis. Our goal was to pinpoint the clinical symptoms that should prompt further examination and treatment in patients diagnosed with pharyngitis. Methods We analyzed categorical data from 305 RADT-positive patients aged three to 15 years using the K-modes clustering method. Each explanatory variable's relationship with cluster variables was statistically examined. Finally, we tested the differences between clusters for continuous variables statistically. Results The K-modes method categorized the cases into two clusters. Cluster 1 included older children with lymph node tenderness, while Cluster 2 consisted of younger children with cough and rhinorrhea. Conclusion Differentiating streptococcal pharyngitis from common cold or upper respiratory tract infection based on clinical symptoms alone is challenging, particularly in young patients. Future research should focus on identifying indicators that can aid in suspecting streptococcal infection in young patients.

摘要

背景与目的 A 组链球菌(GAS)是细菌性咽炎最常见的病因,建议选择性地使用快速抗原检测试验(RADT)。目前,进行该检测的决定基于儿科医生的观察,但标准并不明确。因此,我们利用无监督学习根据 GAS 咽炎的临床表现对患者进行分类。我们的目标是确定在诊断为咽炎的患者中应促使进一步检查和治疗的临床症状。方法 我们使用 K 模式聚类方法分析了 305 名 3 至 15 岁 RADT 阳性患者的分类数据。对每个解释变量与聚类变量的关系进行了统计学检验。最后,我们对连续变量在聚类之间的差异进行了统计学检验。结果 K 模式方法将病例分为两个聚类。聚类 1 包括有淋巴结压痛的较大儿童,而聚类

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/861c/11345101/02a767d31846/cureus-0016-00000065461-i01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验