Suppr超能文献

一种作用迅速的血液期抑制剂,其作用机制与青蒿素和氯喹不同。

A fast-acting inhibitor of blood-stage with mechanism distinct from artemisinin and chloroquine.

作者信息

Kabeche Stephanie, Meister Thomas, Yeh Ellen

机构信息

Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.

Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.

出版信息

bioRxiv. 2024 Aug 12:2024.08.12.607553. doi: 10.1101/2024.08.12.607553.

Abstract

Artemisinins are first-line treatment for malaria, prized for their extremely fast reduction of parasite load in patients. New fast-acting antimalarial compounds are urgently needed to counter artemisinin resistance, but the fast parasite reduction observed with artemisinins is rare among antimalarial compounds. Here we show that MMV1580853 has a very fast killing rate, comparable to that of dihydroartemisinin. Near-complete parasite growth inhibition was observed within 1 hour of treatment with MMV1580853 and dihydroartemisinin, while chloroquine, another fast-acting antimalarial, showed partial growth inhibition after 1h. MMV1580853 was reported to inhibit prenyltransferases, but its fast killing rate is inconsistent with this mechanism-of-action and we were unable to validate any of 3 annotated prenyltransferases as MMV1580853 targets. MMV1580853 also did not phenocopy the inhibition phenotype of either chloroquine or dihydroartemisinin. These results indicate that MMV1580853 has a distinct mechanism-of-action leading to a very fast killing rate. MMV1580853 compound development and investigation of its mechanism-of-action will be critical avenues in the search for drugs matching the remarkable clinical efficacy of artemisinin.

摘要

青蒿素是疟疾的一线治疗药物,因其能极快速降低患者体内的寄生虫载量而备受珍视。迫切需要新型速效抗疟化合物来应对青蒿素耐药性问题,但在抗疟化合物中,像青蒿素那样能快速减少寄生虫数量的情况较为罕见。在此,我们表明MMV1580853具有非常快的杀灭速率,与双氢青蒿素相当。在用MMV1580853和双氢青蒿素处理后的1小时内观察到近乎完全的寄生虫生长抑制,而另一种速效抗疟药氯喹在1小时后显示出部分生长抑制。据报道,MMV1580853可抑制异戊烯基转移酶,但其快速的杀灭速率与这种作用机制不一致,并且我们无法验证3种注释的异戊烯基转移酶中的任何一种为MMV1580853的靶点。MMV1580853也没有模拟氯喹或双氢青蒿素的抑制表型。这些结果表明,MMV1580853具有独特的作用机制,导致其杀灭速率非常快。MMV1580853的化合物开发及其作用机制的研究将是寻找与青蒿素卓越临床疗效相匹配药物的关键途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7383/11343144/e055796b274c/nihpp-2024.08.12.607553v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验