Suppr超能文献

公元前660年三宅坂太阳质子事件的时间被限制在公元前664年至663年之间。

The timing of the ca-660 BCE Miyake solar-proton event constrained to between 664 and 663 BCE.

作者信息

Panyushkina Irina P, Jull A J Timothy, Molnár Mihaly, Varga Tamás, Kontul' Ivan, Hantemirov Rashit, Kukarskih Vladymir, Sljusarenko Igor, Myglan Vladymir, Livina Valerie

机构信息

Laboratory of Tree-Ring Research, University of Arizona, Tucson, AZ USA.

Department of Geosciences, University of Arizona, Tucson, AZ USA.

出版信息

Commun Earth Environ. 2024;5(1):454. doi: 10.1038/s43247-024-01618-x. Epub 2024 Aug 23.

Abstract

Extreme solar energetic particle events, known as Miyake events, are rare phenomena observed by cosmogenic isotopes, with only six documented. The timing of the ca. 660 BCE Miyake event remains undefined until now. Here, we assign its occurrence to 664-663 BCE through new radiocarbon measurements in gymnosperm larch tree rings from arctic-alpine biomes (Yamal and Altai). Using a 22-box carbon cycle model and Bayesian statistics, we calculate the radiocarbon production rate during the event that is 3.2-4.8 times higher than the average solar modulation, and comparable to the 774-775 CE solar-proton event. The prolonged radiocarbon signature manifests a 12‰ rise over two years. The non-uniform signal in the tree rings is likely driven by the low rate of CO gas exchange between the trees and the ambient atmosphere, and the high residence time of radiocarbon in the post-event stratosphere. We caution about using the event's pronounced signature for precise single-year-dating.

摘要

极端太阳高能粒子事件,即所谓的三宅事件,是通过宇宙成因同位素观测到的罕见现象,仅有六次有记录。直到现在,约公元前660年三宅事件的发生时间仍未确定。在此,我们通过对来自北极-高山生物群落(亚马尔和阿尔泰山)的裸子植物落叶松年轮进行新的放射性碳测量,将其发生时间确定为公元前664 - 663年。利用一个22箱碳循环模型和贝叶斯统计方法,我们计算出该事件期间的放射性碳产生率比平均太阳调制高出3.2 - 4.8倍,与公元774 - 775年的太阳质子事件相当。放射性碳特征的延长表现为在两年内上升了12‰。年轮中信号的不均匀可能是由树木与周围大气之间CO气体交换速率低以及事件后平流层中放射性碳的高停留时间所驱动。我们提醒在使用该事件明显的特征进行精确的单年定年时要谨慎。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e113/11343717/decd09ecaa6e/43247_2024_1618_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验