文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

纳米材料:引发免疫原性细胞死亡的癌症疗法。

Nanomaterials: leading immunogenic cell death-based cancer therapies.

机构信息

Department of Urology, China-Japan Friendship Hospital, Beijing, China.

Graduate School of Peking Union Medical College, Peking Union Medical College, Beijing, China.

出版信息

Front Immunol. 2024 Aug 9;15:1447817. doi: 10.3389/fimmu.2024.1447817. eCollection 2024.


DOI:10.3389/fimmu.2024.1447817
PMID:39185425
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11341423/
Abstract

The field of oncology has transformed in recent years, with treatments shifting from traditional surgical resection and radiation therapy to more diverse and customized approaches, one of which is immunotherapy. ICD (immunogenic cell death) belongs to a class of regulatory cell death modalities that reactivate the immune response by facilitating the interaction between apoptotic cells and immune cells and releasing specific signaling molecules, and DAMPs (damage-associated molecular patterns). The inducers of ICD can elevate the expression of specific proteins to optimize the TME (tumor microenvironment). The use of nanotechnology has shown its unique potential. Nanomaterials, due to their tunability, targeting, and biocompatibility, have become powerful tools for drug delivery, immunomodulators, etc., and have shown significant efficacy in clinical trials. In particular, these nanomaterials can effectively activate the ICD, trigger a potent anti-tumor immune response, and maintain long-term tumor suppression. Different types of nanomaterials, such as biological cell membrane-modified nanoparticles, self-assembled nanostructures, metallic nanoparticles, mesoporous materials, and hydrogels, play their respective roles in ICD induction due to their unique structures and mechanisms of action. Therefore, this review will explore the latest advances in the application of these common nanomaterials in tumor ICD induction and discuss how they can provide new strategies and tools for cancer therapy. By gaining a deeper understanding of the mechanism of action of these nanomaterials, researchers can develop more precise and effective therapeutic approaches to improve the prognosis and quality of life of cancer patients. Moreover, these strategies hold the promise to overcome resistance to conventional therapies, minimize side effects, and lead to more personalized treatment regimens, ultimately benefiting cancer treatment.

摘要

近年来,肿瘤学领域发生了变革,治疗方法从传统的手术切除和放射疗法转变为更加多样化和个性化的方法,其中之一是免疫疗法。免疫原性细胞死亡(ICD)属于一类调节性细胞死亡模式,通过促进凋亡细胞与免疫细胞的相互作用并释放特定的信号分子和损伤相关分子模式(DAMPs)来重新激活免疫反应。ICD 的诱导剂可以提高特定蛋白的表达,从而优化肿瘤微环境(TME)。纳米技术的应用显示出了其独特的潜力。由于其可调性、靶向性和生物相容性,纳米材料已成为药物输送、免疫调节剂等的有力工具,并在临床试验中显示出显著的疗效。特别是,这些纳米材料可以有效地激活 ICD,引发强烈的抗肿瘤免疫反应,并维持长期的肿瘤抑制。不同类型的纳米材料,如生物细胞膜修饰的纳米颗粒、自组装纳米结构、金属纳米颗粒、介孔材料和水凝胶,由于其独特的结构和作用机制,在 ICD 诱导中发挥各自的作用。因此,本综述将探讨这些常见纳米材料在肿瘤 ICD 诱导中的最新应用进展,并讨论它们如何为癌症治疗提供新的策略和工具。通过深入了解这些纳米材料的作用机制,研究人员可以开发更精确和有效的治疗方法,改善癌症患者的预后和生活质量。此外,这些策略有望克服对传统疗法的耐药性,最小化副作用,并实现更个性化的治疗方案,最终使癌症治疗受益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aeb2/11341423/7968ff85abfb/fimmu-15-1447817-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aeb2/11341423/cb6a996bf244/fimmu-15-1447817-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aeb2/11341423/934ce16dff72/fimmu-15-1447817-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aeb2/11341423/dbd5c7f28ff4/fimmu-15-1447817-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aeb2/11341423/c14e60714aff/fimmu-15-1447817-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aeb2/11341423/21b2f2b4677b/fimmu-15-1447817-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aeb2/11341423/224b2a04cc51/fimmu-15-1447817-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aeb2/11341423/7968ff85abfb/fimmu-15-1447817-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aeb2/11341423/cb6a996bf244/fimmu-15-1447817-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aeb2/11341423/934ce16dff72/fimmu-15-1447817-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aeb2/11341423/dbd5c7f28ff4/fimmu-15-1447817-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aeb2/11341423/c14e60714aff/fimmu-15-1447817-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aeb2/11341423/21b2f2b4677b/fimmu-15-1447817-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aeb2/11341423/224b2a04cc51/fimmu-15-1447817-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aeb2/11341423/7968ff85abfb/fimmu-15-1447817-g006.jpg

相似文献

[1]
Nanomaterials: leading immunogenic cell death-based cancer therapies.

Front Immunol. 2024

[2]
Sensitize Tumor Immunotherapy: Immunogenic Cell Death Inducing Nanosystems.

Int J Nanomedicine. 2024

[3]
Rediscovery of nanoparticle-based therapeutics: boosting immunogenic cell death for potential application in cancer immunotherapy.

J Mater Chem B. 2021-5-19

[4]
Immunogenic cell death inducers for cancer therapy: An emerging focus on natural products.

Phytomedicine. 2024-9

[5]
Immunogenic cell death-based cancer vaccines: promising prospect in cancer therapy.

Front Immunol. 2024

[6]
Immunogenic Cell Death and Role of Nanomaterials Serving as Therapeutic Vaccine for Personalized Cancer Immunotherapy.

Front Immunol. 2022

[7]
Current status of nanoparticle-mediated immunogenic cell death in cancer immunotherapy.

Int Immunopharmacol. 2024-12-5

[8]
Reactive oxygen species of tumor microenvironment: Harnessing for immunogenic cell death.

Biochim Biophys Acta Rev Cancer. 2024-9

[9]
Nanomaterials-Based Photodynamic Therapy with Combined Treatment Improves Antitumor Efficacy Through Boosting Immunogenic Cell Death.

Int J Nanomedicine. 2021

[10]
Engineering nanomedicines through boosting immunogenic cell death for improved cancer immunotherapy.

Acta Pharmacol Sin. 2020-7

引用本文的文献

[1]
Nano-enabled strategies for targeted immunotherapy in gastrointestinal cancers.

Front Immunol. 2025-8-14

[2]
Reprogramming the tumor-immune landscape via nanomaterial-induced immunogenic cell death: a mini review.

Front Bioeng Biotechnol. 2025-7-22

[3]
The Role of Nitric Oxide in Cancer Treatment: Ally or Foe?

Molecules. 2025-6-29

[4]
Materials, Syntheses and Biomedical Applications of Nano-Quercetin Formulations: A Comprehensive Literature Review.

Int J Nanomedicine. 2025-7-5

[5]
How Effective are Key Phytocompound Carrying Polysaccharide Nanocarriers as Anti-Breast Cancer Therapy? A Comprehensive Review of the Literature.

Int J Nanomedicine. 2025-6-27

[6]
Progress of Immune-Inducible Biomaterials for Post-Ablation Cancers.

Adv Healthc Mater. 2025-8

[7]
Nanomaterial assisted natural killer cell therapy.

Front Immunol. 2025-5-5

[8]
Enhancing breast Cancer immunotherapy using gold nanoparticles carrying tumor antigens.

Sci Rep. 2025-5-14

[9]
Differential Cytotoxicity of Surface-Functionalized Silver Nanoparticles in Colorectal Cancer and Ex-Vivo Healthy Colonocyte Models.

Cancers (Basel). 2025-4-27

[10]
Nanomedicine for cancer patient-centered care.

MedComm (2020). 2024-10-20

本文引用的文献

[1]
Nanomaterial-encapsulated STING agonists for immune modulation in cancer therapy.

Biomark Res. 2024-1-7

[2]
Continuous Expression of Interferon Regulatory Factor 4 Sustains CD8 T Cell Immunity against Tumor.

Research (Wash D C). 2023-11-17

[3]
Strategies for the Nuclear Delivery of Metal Complexes to Cancer Cells.

Adv Mater. 2024-4

[4]
Nanoscale polymer discs, toroids and platelets: a survey of their syntheses and potential applications.

Chem Soc Rev. 2024-2-19

[5]
A biomimetic cuproptosis amplifier for targeted NIR-II fluorescence/photoacoustic imaging-guided synergistic NIR-II photothermal immunotherapy.

Biomaterials. 2024-3

[6]
A carbonic anhydrase-targeted NIR-II fluorescent cisplatin theranostic nanoparticle for combined therapy of pancreatic tumors.

Biomaterials. 2024-3

[7]
Recent Progress in Janus Nano-Objects with Asymmetric Polymer Brushes.

Chem Asian J. 2024-2-1

[8]
Research Progress of Metal Anticancer Drugs.

Pharmaceutics. 2023-12-11

[9]
Extracellular Vesicle and Lipoprotein Interactions.

Nano Lett. 2024-1-10

[10]
DNA-functionalized metal or metal-containing nanoparticles for biological applications.

Dalton Trans. 2024-1-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索